Патент на изобретение №2151981

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2151981 (13) C1
(51) МПК 7
F25J1/02, F25B9/14
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 07.06.2011 – прекратил действие

(21), (22) Заявка: 99110165/06, 19.05.1999

(24) Дата начала отсчета срока действия патента:

19.05.1999

(45) Опубликовано: 27.06.2000

(56) Список документов, цитированных в отчете о
поиске:
СКОТТ Р.Б. Техника низких температур. -М. изд-во иностранной литературы, 1962, с. 19. SU 116255 А, 23.01.1958. SU 184274 А, 17.09.1966. US 3660985 A, 09.05.1972. GB 1304348 A, 24.01.1973. US 4017283 A, 12.04.1977. FR 2570478 A, 21.03.1986.

Адрес для переписки:

197082, Санкт-Петербург, П-82, ул. Красного Курсанта 16, Военный инженерно-космический университет им. А.Ф. Можайского, НИО, НИЛ-6, Кириллову Н.Г.

(71) Заявитель(и):

Военный инженерно-космический университет им. А.Ф. Можайского

(72) Автор(ы):

Кириллов Н.Г.

(73) Патентообладатель(и):

Военный инженерно-космический университет им. А.Ф. Можайского

(54) КРИОГЕННАЯ СИСТЕМА ДЛЯ ОЖИЖЕНИЯ ВОЗДУХА ПО ЦИКЛУ КЛОДА-КИРИЛЛОВА


(57) Реферат:

Изобретение относится к криогенной технике по ожижению воздуха. Использование изобретения позволит повысить КПД системы по ожижению воздуха. Цикл по ожижению воздуха включает в себя следующие процессы: сжатие первичного воздуха в компрессоре, очистку воздуха, предварительное охлаждение в теплообменнике, разделение воздуха на два потока, расширение первого потока в расширительной машине с получением полезной энергии в электрогенераторе, дроссельное расширение второго потока с последующей частичной конденсацией, соединение несконденсировавшейся части воздуха второго потока с первым потоком, их подогрев с повышением давления в теплообменнике, расширение в турбине с получением полезной энергии, сжижение в конденсаторе криогенной машины Стирлинга и подачу сжиженного воздуха через сосуд Дьюара в емкость для жидкого воздуха с помощью насоса высокого давления. Переход газообразного воздуха в жидкую фазу в испарителе холодильной машины создает необходимый перепад давлений в линии газообразного воздуха. 1 ил.


Изобретение относится к области криогенной техники по ожижению воздуха и криогенных холодильных машин, работающих по обратному циклу Стирлинга.

Известны технические решения газовых турбин, в которых энергия сжатого газа при расширении преобразуется в работу одновременно с понижением температуры газа. (Чечеткин А.В., Занемонец Н.А. Теплотехника. Учеб. для хим.-технол. спец. вузов. – М.: Высш. шк., 1986. – стр. 307).

Известны технические решения для газификации сжиженных газов перед их раздачей потребителям с применением насосов высокого давления (Вопросы глубокого охлаждения. /Сб. статей под ред. проф. М.П. Малкова/. Изд.: “Иностр. литература”, М., 1961, стр. 287-288).

Известно устройство сосуда Дьюара для жидкого азота с вакуумно-порошковой изоляцией (Соколов Е.Я., Бродянский В.М. Энергетические основы трансформации тепла и процессов охлаждения. Учеб. пособие для вузов. – 2-е изд., – М.: Энергоиздат, 1981, стр. 202).

Известно, что в области криогенных температур (60-160 K) наиболее высокоэффективным циклом является обратный цикл Стирлинга. Эффективность криогенных машин Стирлинга практически в 2 раза выше по сравнению с другими установками применяемыми для сжижения газов. (Усюкин И.П. Установки, машины и аппараты криогенной техники. М.: Легкая и пищевая промышленность, 1982, стр. 185-186). Однако существующие в настоящее время криогенные машины Стирлинга имеют невысокую производительность.

Известна схема ожижения воздуха по циклу Клода с большой производительностью, включающего в себя линию подачи первичного воздуха, компрессор, очиститель, противоточный теплообменинк, расширительную машину, дроссельный вентиль, емкость с жидким воздухом, линию подачи несконденсировавшегося воздуха, соединяющую емкость с жидким воздухом и компрессор. (Р.Б. Скотт. Техника низких температур. Перевод под ред. проф. М.П. Малкова. М.: Изд. иностр. литер. , 1962, стр. 21-22). Однако цикл Клода имеет невысокий КПД и коэффициент ожижения, в результате чего ожижается только часть воздуха, сжатого компрессором, а оставшаяся часть газообразного воздуха вновь подается в компрессор.

Технический результат, который может быть получен при осуществлении изобретения, заключается в повышении КПД системы по ожижению воздуха и увеличению коэффициента ожижения до 100%.

Для достижения этого технического результата криогенная система для ожижения воздуха, включающая в себя линию подачи воздуха, компрессор, очиститель, противоточный теплообменник, расширительную машину, дроссельный вентиль, емкость с жидким воздухом снабжена криогенной машиной Стирлинга с рабочим телом – гелием и замкнутым контуром конденсации воздуха, соединяющим емкость жидкого воздуха с конденсатором холодильной машины и состоящим из линии газообразного воздуха с заборным устройством в газосодержащей части емкости, расширительной турбиной с электрогенератором на одном валу и линии ожиженного воздуха с сосудом Дьюара, насосом высокого давления и обратным клапаном, при этом линия газообразного воздуха проходит через противоточный теплообменник, а в случае необходимости в состав системы может быть параллельно включено несколько криогенных машин Стирлинга.

Введение в состав криогенной системы для ожижения воздуха расширительной турбины с электрогенератором на одном валу и линии ожиженного воздуха с сосудом Дьюара, насосом высокого давления, и обратным клапаном, при этом линия газообразного воздуха проходит через противоточный теплообменник, а в случае необходимости в состав системы может быть параллельно включено несколько криогенных машин Стирлинга, а также
введение в состав криогенной системы для ожижения воздуха криогенной машины Стирлинга с рабочим телом – гелием и замкнутого контура конденсации воздуха с расширительной турбиной, соединяющим емкость жидкого воздуха с конденсатором холодильной машины позволяет получить новое свойство, заключающееся в возможности доожижения оставшейся части газообразного воздуха, после его расширения в дроссельном вентиле, в конденсаторе высокоэффективной криогенной машины Стирлинга, а также снижение энергопотребления системы в целом за счет использования расширительных машин с получением в ней полезной энергии.

На чертеже изображена криогенная система для ожижения воздуха.

Цикл по ожижению воздуха включает в себя следующие процессы: сжатие воздуха в компрессоре, очистка воздуха, предварительное охлаждение в противоточном теплообменнике, разделение воздуха на два потока, расширение первого потока воздуха в расширительной машине с получением полезной энергии, дроссельное расширение второго потока с последующей частичной конденсацией воздуха (эффект Джоуля-Томсона) и сливом в емкость с жидким воздухом, соединение несконденсировавшейся части воздуха второго потока с первым потоком, их подогрев с повышением давления, расширение в расширительной турбине с получением полезной энергии, ожижение в конденсаторе криогенной машины Стирлинга и подача ожиженного воздуха в емкость для жидкого воздуха.

В состав криогенной системы для ожижения воздуха входит линия подачи воздуха 1, компрессор 2, очиститель воздуха 3, противоточный теплообменник 4, расширительная машина, например турбина 5 с электрогенератором 6, дроссельный вентиль 7, емкость с жидким воздухом 8, криогенная холодильная машина Стирлинга 9, замкнутый контур конденсации воздуха, соединяющий емкость с жидким воздухом 9 с конденсатором (не показан) холодильной машины Стирлинга 9. Замкнутый контур конденсации воздуха состоит из линии газообразного воздуха 10 с заборным устройством 11 в газосодержащей части емкости 8, расширительной турбины 12, расположенной на одном валу с электрогенератором 13 и линии ожиженного воздуха 14 с сосудом Дьюара 15, насосом высокого давления 16 и обратным клапаном 17.

Криогенная система для ожижения воздуха работает следующим образом.

Первичный воздух по линии подачи 1 поступает в компрессор 2, где сжимается до высокого давления и поступает в очиститель 3 для очистки от примесей. Затем предварительно охлаждается в противоточном теплообменнике 4 за счет теплообмена с холодным воздухом и разделяется на два потока. Первый поток воздуха подается в турбину 5, где расширяется с получением полезной энергии в электрогенераторе 6, а второй поток, проходя через дроссельный вентиль 7, частично конденсируется и сливается в емкость 8. Оставшаяся часть несконденсировавшегося холодного воздуха второго потока по линии газообразного воздуха 10 через заборное устройство 11 соединяется с воздухом первого потока и поступает сначала в противоточный теплообменник 4, где охлаждает первичный воздух, при этом сам нагревается с увеличением давления, а затем поступает в расширительную турбину 12, проходя через которую расширяется, охлаждается и поступает в конденсатор (не показан) холодильной машины Стирлинга 9, где происходит его конденсация. Расширение воздуха в турбине 12 позволяет получить электроэнергию в электрогенераторе 13, расположенном на одном валу с турбиной 12. Переход газообразного воздуха в жидкую фазу в конденсаторе холодильной машины 9 создает необходимый перепад давлений в линии 10 перед турбиной 12. Затем ожиженный оставшийся воздух по линии 14 сливается в сосуд Дьюара 15 и насосом высокого давления 16 через обратный клапан 17 подается в емкость 8 в виде жидкости.

Источники информации
1. Чечеткин А. В., Занемонец Н.А. Теплотехника. Учеб. для хим.-технол. спец. вузов. – М.: Высш. шк., 1986. – стр. 307.

2. Вопросы глубокого охлаждения. /Сб. статей под ред. проф. М.П. Малкова/. Изд.: “Иностр. литература”. М., 1961, стр. 287-288.

3. Соколов Е. Я. , Бродянский В.М. Энергетические основы трансформации тепла и процессов охлаждения. Учеб. пособие для вузов. – 2-е изд. – М.: Энергоиздат, 1981, стр.202.

4. Усюкин И.П. Установки, машины и аппараты криогенной техники. М.: Легкая и пищевая промышленность, 1982, стр. 185-186.

5. Вопросы глубокого охлаждения. /Сб. статей под ред. проф. М.П. Малкова/. Изд.: “Иностр. литература”. М., 1961, стр. 35.

6. Р. Б. Скотт. Техника низких температур. Перевод под ред. проф. М.П. Малкова. М.: Изд. иностр. литер., 1962, стр. 21-22, – прототип.

Формула изобретения


Криогенная система для ожижения воздуха, включающая в себя линию подачи воздуха, компрессор, очиститель, противоточный теплообменник, расширительную машину, дроссельный вентиль, емкость с жидким воздухом, отличающаяся тем, что снабжена криогенной машиной Стирлинга с рабочим телом-гелием и замкнутым контуром конденсации воздуха, соединяющим емкость жидкого воздуха с конденсатором холодильной машины и состоящим из линии газообразного воздуха с заборным устройством в газосодержащей части емкости, расширительной турбиной с электрогенератором на одном валу, и линии ожиженного воздуха с сосудом Дьюара, насосом высокого давления и обратным клапаном, при этом линия газообразного воздуха проходит через противоточный теплообменник, причем система снабжена по меньшей мере одной криогенной машиной Стирлинга.

РИСУНКИ

Рисунок 1


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 20.05.2001

Номер и год публикации бюллетеня: 33-2002

Извещение опубликовано: 27.11.2002


Categories: BD_2151000-2151999