Патент на изобретение №2236712
|
||||||||||||||||||||||||||
(54) РЕГУЛИРУЮЩАЯ ТЕПЛОВЫДЕЛЯЮЩАЯ СБОРКА ВОДО-ВОДЯНОГО ЭНЕРГЕТИЧЕСКОГО РЕАКТОРА
(57) Реферат:
Изобретение относится к тепловыделяющим сборкам, используемым для двойной функции: энерговыделения и регулирования потока нейтронов в водо-водяных ядерных энергетических реакторах, особенно в ядерных реакторах типа ВВЭР-440. В регулирующей тепловыделяющей сборке водо-водяного энергетического реактора масса диоксида урана в пучке, наружный и внутренний диаметры оболочки тепловыделяющего элемента составляют от 69,16 кг до 159,25 кг, от 6,00
Область техники, к которой относится изобретение Изобретение относится к ядерной энергетике и касается конструкции тепловыделяющих сборок, используемых для двойной функции: энерговыделения и регулирования потока нейтронов, особенно в ядерных реакторах с водой под давлением типа ВВЭР-440 (водо-водяной энергетический реактор для энергоблока с электрической мощностью 440 МВт). Уровень техники Проблема повышения безопасности действующих и вновь проектируемых АЭС с водо-водяными энергетическими реакторами типа ВВЭР-440 имеет различные пути решения. В настоящее время данная задача решается, в основном, за счет повышения надежности защитных систем, совершенствованием отдельных узлов, оптимизацией режимов и регламента эксплуатации и т.д. При этом практически не затрагиваются вопросы по существенному улучшению охлаждения тепловыделяющих элементов, в тепловыделяющих сборках, особенно в аварийных режимах. Такой подход обусловлен в значительной степени многолетним достаточно успешным опытом проектирования и эксплуатации стержневых тепловыделяющих элементов, используемых как в составе обычных тепловыделяющих сборок, так и в составе регулирующих сборок (АРК). Известна регулирующая тепловыделяющая сборка реактора ВВЭР-440, содержащая поглощающую верхнюю часть и тепловыделяющую нижнюю часть (В.В.Зверков, Е.И.Игнатенко, Ядерная паро-производящая установка с ВВЭР-440, Библиотека эксплуатационника, М., Энергоатомиздат, 1987, с.17-20). Известная АРК является рабочим органом системы управления и защиты (СУЗ) и обеспечивает быстрое прекращение ядерной реакции в реакторе путем введения в активную зону поглотителя нейтронов и одновременно выведения из активной зоны ее тепловыделяющей части. В таком режиме сборка функционирует как аварийный орган регулирования. В процессе эксплуатации реактора посредством сборки осуществляют автоматическое регулирование в целях поддержания мощности реактора на заданном уровне мощности и перевода его с одного уровня мощности на другой. Сборка используется также для компенсации изменения реактивности (отравление реактора, мощностной и температурный эффекты) за счет частичного или полного выведения поглотителя из активной зоны. Изначально в реактор устанавливают тепловыделяющую часть, в головку которой затем вставляют хвостовик поглощающей части. Соединение частей осуществлено посредством промежуточной штанги, которая проходит через поглощающую часть и посредством захвата сцепляется с головкой тепловыделяющей части. С верхней частью промежуточной штанги сцеплена рейка привода АРК, посредством которого осуществляется перемещение сборки от крайнего верхнего положения, при котором поглощающая часть полностью выведена из активной зоны, до крайнего нижнего положения, при котором поглощающая часть полностью введена в активную зону, а тепловыделяющая часть выведена из нее. Во внутренней полости поглощающей части установлен вкладыш трубчатой формы из бористой стали, который является поглотителем нейтронов. При функционировании сборки в составе активной зоны в области стыковочного узла между поглощающей и тепловыделяющей частями имеет место всплеск потока тепловых нейтронов, поскольку полость стыковочного узла заполнена водой. Изменение положения сборки по высоте активной зоны приводит к увеличению всплеска потока тепловых нейтронов, что оказывает негативное влияние на параметры рабочих тепловыделяющих сборок, находящихся в непосредственной близости от регулирующей сборки. В результате имеет место неоднородность энерговыделения по высоте и радиусу активной зоны. Наиболее близкой по технической сущности и достигаемому результату к описываемой является регулирующая тепловыделяющая сборка водо-водяного энергетического реактора, содержащая поглощающую нейтроны надставку, соединенную с тепловыделяющей частью, содержащую гексагональные дистанционирующие решетки, в ячейках которых размещен пучок стержневых тепловыделяющих элементов с топливным сердечником из диоксида урана, заключенным в оболочку (WO 94/05013, G 21 С 7/103, 03.03.94). В известной сборке использован промежуточный поглотитель, который является частью блока, удерживающего стержневые тепловыделяющие элементы, и представляет собой элементы из гафния, выполненные, в частности в виде стержней. Стержни примыкают к торцу решетки с отверстиями для прохода воды и идут между тепловыделяющими элементами в область головной части пучка, в область, соответствующую компенсационному объему и верхней части тепловыделяющих элементов, т.е. в область головной части пучка тепловыделяющих элементов. Элементы из гафния обладают высокой физической эффективностью и сильно “заваливают” поля энерговыделения в нескольких рядах тепловыделяющих элементов, окружающих кассету АРК, и уменьшают всплеск потока тепловых нейтронов в области стыковочного узла и тем самым снижают локальные всплески энерговыделения на тепловыделяющих элементах рабочих кассет соседних с регулирующей тепловыделяющей сборкой. Наряду с модернизацией, касающейся наличия гафниевых стержней в области стыковочного узла, в известной сборке уменьшены наружный и внутренний диаметры стержневых тепловыделяющих элементов и их количество. В пучке известной АРК реактора ВВЭР-440 содержится 120 стержневых твэлов, выполненных с наружным диаметром от 8,80 – к увеличению тепловых нагрузок на твэл, к более высоким коэффициентам неравномерности мощности по активной зоне и в сборках, к положительному коэффициенту реактивности по температуре теплоносителя для всего температурного диапазона разогрева активной зоны (до 260 – к снижению запасов до кризиса теплообмена, – к ухудшению термомеханических характеристик твэл (повышению температуры топлива ~ на 220 Экспериментальные и расчетные исследования показывают, что, с точки зрения предотвращения возможности разгерметизации твэлов применительно к авариям с потерей теплоносителя, предельные температуры оболочек не должны превышать уровень (700-750) Из вышеизложенного следует, что для повышения уровня безопасности действующих и вновь проектируемых АЭС с ВВЭР-440 необходимо разработать стержневые твэлы контейнерной конструкции уменьшенного диаметра при увеличенном их числе в ТВС и АРК (при условии сохранения мощности реактора и близкого к штатным ТВС и АРК водо-уранового отношения топливной решетки), которые позволят принципиально решить проблему возможной разгерметизации твэлов на начальном этапе аварии с потерей теплоносителя. Кроме того, при разработке модернизированной активной зоны реактора ВВЭР-440 необходимо осуществить выбор основных параметров из условия максимального сохранения конструкции активной зоны и ядерной энергоустановки, а также обеспечения приемлемых нейтронно-физических и теплогидравлических характеристик, близких к штатным характеристикам активной зоны реактора ВВЭР-440, так как задачей настоящего изобретения не является разработка принципиально нового реактора. Такой подход вызывает определенные ограничения, накладываемые на выбор основных параметров модернизированной активной зоны, которые сводятся к следующему: – шаг (147+/-0.3 мм) между осями ТВС и АРК и их высоты в модернизированной активной зоне должны быть такими же, как и в штатных конструкциях ТВС и АРК ВВЭР-440; – отличия размера “под ключ” и высоты топливных сердечников модернизированных сборок, по сравнению со штатными конструкциями сборок ВВЭР-440, не должны превышать 1,5% и 2,5%, соответственно; – диаметр твэлов и их количество в модернизированных ТВС и АРК должны обеспечивать снижение линейных тепловых нагрузок в твэлах модернизированной активной зоны; – уменьшение загрузки топлива в модернизированных ТВС и АРК, по сравнению со штатными конструкциями ТВС и АРК реактора ВВЭР-440, не должно превышать 10%; – для обеспечения проектной продолжительности работы топливной загрузки уменьшение загрузки топлива в модернизированной сборке, по сравнению со штатной конструкцией сборки должно быть скомпенсировано повышением глубины выгорания в модернизированной сборке по oтношению к штатной сборке; – увеличение гидравлических потерь на трение в модернизированных сборках по сравнению со штатными конструкциями сборок не должно превышать имеющихся запасов по напору главного циркуляционного насоса (ГЦН) реактора ВВЭР-440; – количество, диаметр и размещение органов СУЗ должно быть таким же, как и в штатной конструкции активной зоны реактора ВВЭР-440. Сущность изобретения Задачей настоящего изобретения является разработка и создание новых регулирующих тепловыделяющих сборок водо-водяного энергетического реактора тепловой мощностью от 1150 МВт до 1700 МВт, обладающих улучшенными характеристиками, в частности, повышенной безопасностью и надежностью при эксплуатации вновь проектируемых и действующих реакторов, позволяющими скомпенсировать повышенную себестоимость модернизированной АРК и получить в целом увеличение экономической эффективности. В результате решения данной задачи при реализации изобретения могут быть получены технические результаты, заключающиеся в снижении тепловых нагрузок тепловыделяющих элементов, уменьшении вероятности разгерметизации оболочек твэлов, снижении неравномерности энерговыделения, расширении диапазона маневрирования мощностью реактора и улучшении характеристик топливоиспользования за счет повышения глубины выгорания ядерного топлива. Данные технические результаты достигаются тем, что в регулирующей тепловыделяющей сборке водо-водяного энергетического реактора, содержащей поглощающую нейтроны надставку, соединенную с тепловыделяющей частью, содержащей гексагональные дистанционирующие решетки, в ячейках которых размещен пучок стержневых тепловыделяющих элементов с топливным сердечником из диоксида урана, заключенным в оболочку, отличающейся тем, что дистанционирующие решетки содержат 217 ячеек для пучка, содержащего от 174 до 216 стержневых тепловыделяющих элементов с наружным и внутренним диаметрами оболочки от 6,00 Отличительной особенностью настоящего изобретения является то, что дистанционирующие решетки содержат 217 ячеек для пучка, содержащего от 174 до 216 стержневых тепловыделяющих элементов с наружным и внутренним диаметрами оболочки от 6,00 Целесообразно, чтобы масса диоксида урана в пучке, наружный и внутренний диаметры оболочки стержневого тепловыделяющего элемента составляли от 110,36 кг до 136,08 кг, от 7,00 Также целесообразно, чтобы масса диоксида урана в пучке, наружный и внутренний диаметры оболочки стержневого тепловыделяющего элемента составляли от 109,89 кг до 135,24 кг, от 7,20 Кроме того, целесообразно, чтобы масса диоксида урана в пучке, наружный и внутренний диаметры оболочки стержневого тепловыделяющего элемента составляли от 108,83 кг до 133,73 кг, от 7,40 Не менее целесообразно, чтобы масса диоксида урана в пучке, наружный и внутренний диаметры оболочки стержневого тепловыделяющего элемента составляли от 116,85 кг до 132,60 кг, от 7,00 Наиболее целесообразно, чтобы масса диоксида урана в пучке, наружный и внутренний диаметры оболочки стержневого тепловыделяющего элемента составляли от 110,96 кг до 128,29 кг, от 7,60 Также целесообразно, чтобы масса диоксида урана в пучке, наружный и внутренний диаметры оболочки стержневого тепловыделяющего элемента составляли от 111,79 кг до 129,41 кг, от 7,50 Следует подчеркнуть, что только вся совокупность существенных признаков обеспечивает решение поставленной задачи изобретения и получение вышеуказанных новых технических результатов. Действительно, известны твэлы с наружным диаметром оболочки 8,8 Перечень фигур чертежей. На фиг.1 изображен вариант продольного разреза модернизированной в соответствии с настоящим изобретением регулирующей тепловыделяющей сборки для реактора ВВЭР-440, на фиг.2 изображен вариант поперечного сечения дистанционирующей решетки с пучком тепловыделяющих элементов, на фиг.3 изображен вариант продольного разреза тепловыделяющего элемента для модернизированной АРК реактора ВВЭР-440, на фиг.4 показано поперечное сечение модернизированной регулирующей тепловыделяющей сборки, а на фиг.5 представлены кривые, характеризующие изменение максимальной температуры оболочки наиболее энергонапряженного штатного и модернизированного твэла, используемого в описываемой АРК для реактора ВВЭР-440 при аварии с разрывом трубопровода Ду 500. Сведения, подтверждающие возможность осуществления изобретения. Описываемая регулирующая тепловыделяющая сборка содержит шестигранный чехол – поглощающую нейтроны надставку 1, соединенную с тепловыделяющей частью 2, внутри которой расположен пучок 3 тепловыделяющих элементов 4 с оболочкой 5, внутри которой расположен топливный сердечник 6 (см. фиг.1 – фиг.3). Тепловыделяющие элементы 4 установлены в гексагональных дистанционирующих решетках 7 в шестигранном корпусе 8. Гексагональные дистанционирующие решетки 7, изготовленные из циркониевого сплава, механически связаны между собой центральной трубой 9 (также изготовленной из циркониевого сплава). Дистанционирующие решетки 7 для описываемой АРК имеют 169 или 217 ячеек 10 (см фиг.2). В зависимости от выбранного количества твэлов 2 в пучке, в свободные ячейки дистанционирующих решеток 7 могут быть вставлены, например, цилиндрические вытеснители, выгорающие поглотители, технологические каналы и т.п.(на чертеже не показаны). Топливный сердечник 6 может быть выполнен диаметром от 5,00 В качестве материала таблеток 11 наиболее целесообразно использовать спрессованный и спеченный диоксид урана со средней плотностью (10,4 При выборе толщины оболочки 5 твэла модернизированной активной юны наиболее целесообразно сохранить отношение толщины оболочки к наружному диаметру описываемого твэла таким же, как и в штатных твэлах реактора ВВЭР-440, что с учетом сохранения величины давления заполнения гелием (0,2-0,7) МПа позволяет гарантировать устойчивость оболочек твэла модернизированной активной зоны не меньшую, чем для штатных твэлов. Кроме того, необходимо также учитывать условие, касающееся того, что радиальный зазор между таблетками 11 топливного сердечника 6 и оболочкой 5 в описываемых твэлах был не менее 0,05 Вследствие низкой теплопроводности материала таблеток 11 топливного сердечника, а также с учетом всех вышеприведенных условий, оболочка 5 стержневого твэла описываемой АРК для модернизированной активной зоны реактора ВВЭР-440 должна иметь наружный и внутренний диаметры (6,00 – наружный диаметр оболочки твэла выбран от 6,00 – внутренним диаметр оболочки твэла выбран от 5,09 – масса диоксида урана выбрана от 69,16 кг до 159,25 кг; – в дистанционирующих решетках выполнены 217 ячеек, а для пучка, содержащего от 132 до 168 твэлов: – наружный диаметр оболочки твэла выполнен от 7,80 – внутренний диаметр оболочки твэла выполнен от 6,62 – масса диоксида урана выбрана от 88,67 кг до 149,53 кг; – в дистанционирующих решетках выполнены 169 ячеек. Выполнение твэла описываемой АРК с пучком от 174 до 216 шт. наружным диаметром менее 6,00 Следует отметить, что первые четыре вышеуказанные условия позволяют уточнить предпочтительные границы диапазонов основных характеристик описываемого твэла для модернизированной активной зоны реактора ВВЭР-440, а именно: 1. Для регулирующих тепловыделяющих сборок с дистанционирующими решетками, содержащими 217 ячеек: – пучок содержит от 204 до 210 твэлов, – наружный диаметр оболочки твэла выбран от 7,00 – внутренний диаметр оболочки твэла выбран от 5,94 – масса диоксида урана в регулирующей тепловыделяющей сборке выбрана от 110,36 кг до 136,08 кг или – пучок содержит от 192 до 198 твэлов, – наружный диаметр оболочки твэла выполнен от 7,20 – внутренний диаметр оболочки твэла выполнен от 6,11 – масса диоксида урана в регулирующей тепловыделяющей сборке выбрана от 109,89 кг до 135,24 кг или – пучок содержит от 180 до 186 твэлов, – наружный диаметр оболочки твэла выполнен от 7,40 – внутренний диаметр оболочки твэла выполнен от 6,28 – масса диоксида урана регулирующей тепловыделяющей сборки выбрана от 108,83 кг до 133,73 кг. 2. Для тепловыделяющих сборок с дистанционирующими решетками, содержащими 169 ячеек: – пучок содержит от 156 до 162 твэлов, – наружный диаметр оболочки твэла выбран от 7,90 – внутренний диаметр оболочки твэла выбран от 6,70 – масса диоксида урана в регулирующей тепловыделяющей сборке выбрана от 107,49 кг до 131,68 кг, или – пучок содержит от 144 до 150 твэлов, – наружный диаметр оболочки твэла выполнен от 8,10 – внутренний диаметр оболочки твэла выполнен от 6,74 – масса диоксида урана в регулирующей тепловыделяющей сборке выбрана от 104,31 кг до 127,80 кг или – пучок содержит 138 твэлов, – наружный диаметр оболочки твэла выполнен от 8,30 – внутренний диаметр оболочки твэла выполнен от 7,04 – масса диоксида урана в регулирующей тепловыделяющей сборке выбрана от 104,96 кг до 120,33 кг. Кроме того, из первых двух и последних двух вышеуказанных условий следует, что для модернизированной активной зоны реактора ВВЭР-440 наиболее целесообразным является выполнение регулирующих тепловыделяющих сборок со следующими характеристиками, а именно: 1. Для регулирующих тепловыделяющих сборок с дистанционирующими решетками, содержащими 217 ячеек: – пучок содержит 216 твэлов, – наружный диаметр оболочки твэла выбран от 7,00 – внутренний диаметр оболочки твэла выбран от 5,94 – масса диоксида урана в регулирующей тепловыделяющей сборке выбрана от 116,85 кг до 132,60 кг или – пучок содержит 174 твэлов, – наружный диаметр оболочки твэла выбран от 7,60 – внутренний диаметр оболочки твэла выбран от 6,45 – масса диоксида урана регулирующей тепловыделяющей сборки выбрана от 110,96 кг до 128,29 кг или – пучок содержит 180 твэлов, – наружный диаметр оболочки твэла выбран от 7,50 – внутренний диаметр оболочки твэла выбран от 6,36 – масса диоксида урана регулирующей тепловыделяющей сборки выбрана от 111,79 кг до 129,41 кг. 2. Для регулирующих тепловыделяющих сборок с дистанционирующими решетками, содержащими 169 ячеек: – пучок содержит 168 твэлов, – наружный диаметр оболочки твэла выбран от 7,80 – внутренний диаметр оболочки твэла выбран от 6,62 – масса диоксида урана в регулирующей тепловыделяющей сборке выбрана от 112,85 кг до 126,98 кг или – пучок содержит 132 твэла, – наружный диаметр оболочки твэла выбран от 8,40 – внутренний диаметр оболочки твэла выбран от 7,13 – масса диоксида урана регулирующей тепловыделяющей сборки выбрана от 102,83 кг до 117,73 кг или – пучок содержит 138 твэлов, – наружный диаметр оболочки твэла выбран от 8,30 – внутренний диаметр оболочки твэла выбран от 7,04 – масса диоксида урана регулирующей тепловыделяющей сборки выбрана от 104,96 кг до 120,33 кг. Соединение поглощающей нейтроны надставки 1 и тепловыделяющей части 2 осуществляется посредством стыковочного узла 15. Стыковочный узел 15 содержит захватное устройство 16, взаимодействующее с промежуточной штангой, соединенной с приводом перемещения сборки (на чертежах не показаны). В нижней части регулирующей тепловыделяющей сборки предусмотрен гидравлический демпфер, выполненный в виде стакана 17. При сбросе регулирующей тепловыделяющей сборке в режиме аварийной защиты стакан 17 взаимодействует с ответным поршнем, который расположен в трубе днища шахты активной зоны. Анализ работоспособности и термомеханического состояния твэлов позволил уточнить некоторые основные конструкционные параметры твэлов описываемой АРК. Как показали расчетные исследования, значительное снижение тепловой нагрузки на твэл позволяет отказаться от ставшей традиционной для реакторов типа ВВЭР и не нашедшей применения в зарубежных реакторах PWR конструкции топливной таблетки с центральным отверстием. Такое решение обусловлено, с одной стороны, относительно небольшим снижением температуры топлива за счет центрального отверстия при пониженных тепловых нагрузках на твэл и увеличившимся запасом надежности по отношению к плавлению топлива, а, с другой, возможными технологическими трудностями при изготовлении таблеток с центральными отверстиями менее 1,5 Технология изготовления описываемых конструкций тепловыделяющих элементов и регулирующих тепловыделяющих сборок производится на известном штатном оборудовании и не имеет отличий с точки зрения производства аналогичных устройств. На фиг.5, в качестве примера, представлены кривые, характеризующие изменение при максимальной проектной аварии (МПА) температуры оболочек твэлов с максимальной нагрузкой для штатной (наружный диаметр оболочки штатного твэла 9,10 Следует также отметить, что твэлы описываемой АРК модернизированной активной зоны реактора ВВЭР-440, вследствие снижения удельных тепловых нагрузок, имеют значительно более низкие температуры топлива и обладают повышенной работоспособностью из-за уменьшения воздействия на оболочку твэла давления газообразных продуктов деления. Пониженный выход их в твэлах модернизированной активной зоны приводит также к меньшему коррозионному воздействию на оболочку со стороны топлива. Это дает основания полагать (расчетное обоснование), что в твэлах описываемой АРК модернизированной активной зоны реактора ВВЭР-440 реально достижение среднего выгорания топлива (55-60) МВт Работоспособность твэлов в переходных режимах работы, связанных с требуемым маневрированием мощностью, обусловлена многими факторами: уровнем тепловых нагрузок, предысторией работы, скоростью и величиной изменения мощности, коррозионным воздействием на оболочку со стороны топливного сердечника и др. Для избежания разгерметизации твэлов в маневренных режимах вводятся ограничения по скорости и диапазону подъема мощности штатного реактора, что приводит к экономическим потерям. Значения допустимой “ступеньки” подъема мощности наиболее резко снижаются с увеличением как выгорания топлива, так и исходной линейной нагрузки. Поэтому снижение линейных тепловых нагрузок твэлов является одним из самых эффективных путей в решении этой проблемы. Уменьшение максимальных тепловых линейных нагрузок от 40 кВт/м до 23 кВт/м практически дает неограниченные возможности в изменении мощности для модернизированных конструкций ТВС. Средняя линейная нагрузка твэла описываемой АРК для модернизированной активной зоны реактора ВВЭР-440 с наружным диаметром от 6,00 Следует также отметить, что согласно экономическим расчетам для компенсации повышенной себестоимости модернизированной АРК достаточно или продление топливного цикла максимум на (25-30) эф.суток, или повышение мощности энергоблока на 3,6%. Оценки потенциальной возможности модернизированной активной зоны показывают, что увеличение продолжительности топливных циклов на 30 эф.суток достигается, при реализации схемы перегрузок модернизированных сборок с более глубоким уменьшением утечки нейтронов, что выполнимо на реакторах ВВЭР-440 с учетом роста теплотехнических запасов при переходе на уменьшенный диаметр твэлов. Теплогидравлические расчеты модернизированной активной зоны реактора ВВЭР-440 подтверждают потенциальную возможность увеличения тепловой мощности активной зоны при использовании твэлов уменьшенного диаметра на величину (до 15%) существенно больше требуемой (3,6%) для компенсации повышенной стоимости модернизированной АРК. Таким образом, описанная выше конструкция модернизированной АРК для реактора ВВЭР-440 позволяет не только скомпенсировать повышенную себестоимость, но и получить увеличение экономической эффективности. На основании вышеизложенного можно констатировать, что переход на модернизированную активную зону с описываемыми регулирующими тепловыделяющими сборками в реакторах ВВЭР-440 дает возможность понизить тепловые нагрузки на твэл в (1,46-2,03) раз. Такое значительное снижение линейных тепловых нагрузок в твэлах описываемой АРК модернизированной активной зоны реактора ВВЭР-440 позволяет: – повысить безопасность энергоустановки с реактором ВВЭР-440; – обеспечить возможность решения проблемы, связанной с маневрированием мощностью реактора ВВЭР-440; – увеличить работоспособность твэлов в нормальных условиях эксплуатации, что дает основания считать реальным достижение среднего выгорания топлива в твэлах (55-60) МВт Следует отметить, что описываемые ТВС могут быть использованы не только в реакторах ВВЭР-440, а также и других водо-водяных реакторах с водой под давлением (PWR), в реакторах с кипящей водой (BWR) и в тяжеловодных реакторах. Формула изобретения
1. Регулирующая тепловыделяющая сборка водо-водяного энергетического реактора, содержащая поглощающую нейтроны надставку, соединенную с тепловыделяющей частью, содержащей гексагональные дистанционирующие решетки, в ячейках которых размещен пучок стержневых тепловыделяющих элементов с топливным сердечником из диоксида урана, заключенным в оболочку, отличающаяся тем, что дистанционирующие решетки содержат 217 ячеек для пучка, содержащего от 174 до 216 стержневых тепловыделяющих элементов с наружным и внутренним диаметрами оболочки от 6,00 2. Регулирующая тепловыделяющая сборка водо-водяного энергетического реактора по п.1, отличающаяся тем, что масса диоксида урана в пучке, наружный и внутренний диаметры оболочки стержневого тепловыделяющего элемента составляют от 110,36 до 136,08 кг, от 7,00 3. Регулирующая тепловыделяющая сборка водо-водяного энергетического реактора по п.1, отличающаяся тем, что масса диоксида урана в пучке, наружный и внутренний диаметры оболочки стержневого тепловыделяющего элемента составляют от 109,89 до 135,24 кг, от 7,20 4. Регулирующая тепловыделяющая сборка водо-водяного энергетического реактора по п.1, отличающаяся тем, что масса диоксида урана в пучке, наружный и внутренний диаметры оболочки стержневого тепловыделяющего элемента составляют от 108,83 до 133,73 кг, от 7,40 5. Регулирующая тепловыделяющая сборка водо-водяного энергетического реактора по п.1, отличающаяся тем, что масса диоксида урана в пучке, наружный и внутренний диаметры оболочки стержневого тепловыделяющего элемента составляют от 116,85 до 132,60 кг, от 7,00 6. Регулирующая тепловыделяющая сборка водо-водяного энергетического реактора по п.1, отличающаяся тем, что масса диоксида урана в пучке, наружный и внутренний диаметры оболочки стержневого тепловыделяющего элемента составляют от 110,96 до 128,29 кг, от 7,60 7. Регулирующая тепловыделяющая сборка водо-водяного энергетического реактора по п.1 и/или 4, отличающаяся тем, что масса диоксида урана в пучке, наружный и внутренний диаметры оболочки стержневого тепловыделяющего элемента составляют от 111,79 до 129,41 кг, от 7,50 РИСУНКИ
|
||||||||||||||||||||||||||