Патент на изобретение №2235590
|
||||||||||||||||||||||||||
(54) КАТАЛИЗАТОР ДЛЯ ПРЕВРАЩЕНИЯ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ C2-C12, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ПРЕВРАЩЕНИЯ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ C2-C12 В ВЫСОКООКТАНОВЫЙ БЕНЗИН И/ИЛИ АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ
(57) Реферат:
Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов превращения алифатических углеводородов С2-С12 в высокооктановый бензин и/или ароматические углеводороды. Цель изобретения – получение активного и селективного катализатора для процесса превращения алифатических углеводородов С2-С12 в высокооктановый бензин и/или ароматические углеводороды. Технический результат достигается тем, что предлагаемый катализатор для превращения алифатических углеводородов С2-С12 в высокооктановый бензин и/или ароматические углеводороды содержит 60,0-80,0 мас.% железоалюмосиликата со структурой высококремнеземного цеолита типа ZSM-5 c силикатным модулем SiO2/Al2O3 = 20-160, SiO2/Fe2O3 = 30-5000, модифицирующую добавку, выбранную, по крайней мере, из группы оксидов: медь, цинк, галлий, лантан, молибден, рений в количестве 0,1-10,0 мас.%; упрочняющую добавку – оксид бора, фосфора или их смеси в количестве 0,5-5,0 мас.%; связующее оксид алюминия – остальное до 100,0 мас.%. Катализатор получают сухим смешением исходных соединений с последующей механохимической обработкой в вибромельнице в течение 0,1-72 ч, формовкой катализаторной массы, сушкой и катализатор сформирован в процессе термообработки при Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов превращения алифатических углеводородов C2-C12 в высокооктановый бензин и ароматические углеводороды. Основным промышленным процессом получения высокооктановых бензинов и ароматических углеводородов является каталитический риформинг прямогонных бензиновых фракций, который проводится при высоких температурах 450-550 Известны способы получения катализаторов для превращения низкомолекулярных углеводородов С2-С12 в высокооктановый бензин или ароматические углеводороды (Пат. RU N 2144845, В 01 J 29/44, С 10 G 35/095, 1998; Пат. RU N 2144846, В 01 J 29/44, С 10 G 35/095, 1998; Пат. RU N 2144847, В 01 J 29/44, С 10 G 35/095, 1998). Согласно данным способам превращение низкомолекулярных углеводородов 2-C12 в высокооктановый бензин или ароматические углеводороды осуществляют на катализаторах, содержащих цеолит семейства пентасил с силикатным модулем SiO2/Al2O3=20-80, модифицированные оксидом цинка, платиной, оксидом бора или оксидом фосфора, или оксидом бора и оксидом фосфора, связующее вещество – оксид алюминия. Основными общими недостатками описанных способов получения катализаторов являются использование дорогостоящего Pt-модификатора и невысокий выход жидких продуктов реакции. Известен цеолитсодержащий катализатор превращения алифатических углеводородов С2-С12 в высокооктановый компонент бензина или концентрат ароматических углеводородов, содержащий высококремнеземный цеолит группы пентасилов с мольным отношением SiO2/Аl2O3=20-80 моль/моль и остаточным содержанием оксида натрия не более 0,4 маc.%, оксид цинка, галлия, смесь двух или более оксидов редкоземельных элементов, выбранных из группы Се, La, Nd, Pr, связующий компонент, дополнительно содержит оксиды железа (III) и магния (Пат. RU N 2172212, В 01 J 29/46, С 10 G 35/095, 1999). Данный состав катализатора обеспечивает повышение выхода жидких углеводородов С5+ и повышение содержания в них ароматических углеводородов. Недостатками данного способа являются многостадийность приготовления, сложный состав многокомпонентного катализатора и недостаточно высокий выход высокооктанового компонента бензина. Известен способ получения высококремнеземных цеолитов типа ZSM-5 (Пат. RU N 1527154, С 01 В 33/28, 1987). Высококремнеземные цеолиты типа ZSM-5 с силикатным модулем SiO2/Al2O3=30-200 получают гидротермальной кристаллизацией реакционной смеси при 120-180 Недостатком катализатора является недостаточно высокий выход жидких продуктов – высокооктанового бензина из алифатических углеводородов С2-С12. Известен катализатор превращения алифатических углеводородов C2-C12 в высокооктановый компонент бензина или концентрат ароматических углеводородов, принятый за прототип (Пат. RU N 2165293, В 01 J 29/40, С 10 G 35/095, 2000). Катализатор содержит, маc.%: цеолит группы пентасилов с мольным отношением SiO2/Аl2О3=20-150 и остаточным содержанием оксида натрия не более 0,4 маc.% 20,00-90,00; оксид цинка 0,10-6,00 и/или оксид галлия 0,10-3,00; смесь двух или более оксидов редкоземельных элементов, выбранных из группы Се, La, Nd, Pr 0,10-5,00; оксид железа (III) 0,01-2,00; оксид магния 0,01 -2,00; оксид кальция 0,01-2,00; связующий компонент – остальное. Недостатками данного катализатора, принятого за прототип, являются многостадийность приготовления, сложный состав многокомпонентного катализатора и недостаточно высокий выход высокооктанового компонента бензина. Известен способ получения высокооктановых бензинов, где углеводородную фракцию с высоким содержанием углеводородов 2-С5, имеющую температуру конца кипения в области температур кипения бензинов, фракционируют с выделением фракции С2-С5 и/или стабильного бензина (фракция С5+) или легкого бензина (фр. С5– (60-80) Недостатками данного способа являются многостадийность и сложность проведения процесса получения высокооктановых бензинов. Известен способ получения высокооктановых бензиновых фракций и ароматических углеводородов, где углеводородное сырье, выкипающее в области температур кипения бензинов, подвергают последовательному контактированию в реакционных зонах с катализатором на основе цеолита типа ZSM-5 или ZSM-11, в том числе модифицированного элементами I, II, III, IV и VIII групп (Пат. RU N 2039790, С 10 G 35/095, 1993). При этом в каждой последующей зоне подвергают контактированию легкую бензиновую фракцию предыдущей зоны, а тяжелые бензиновые фракции зон смешивают с продуктами контактирования последней зоны. Недостатками данного способа являются многостадийность и сложность проведения процесса получения высокооктановых бензиновых фракций и ароматических углеводородов. Известен способ получения высокооктановых бензиновых фракций и ароматических углеводородов (Пат. RU N 2163624, С 10 G 35/095, 1998). Согласно данному способу превращение углеводородного сырья и/или кислородсодержащих соединений проводят при температуре 280-460 Недостатками данного способа являются сложность приготовления катализатора и недостаточно высокий выход высокооктановых бензиновых фракций и ароматических углеводородов из углеводородного сырья. Наиболее близким по сущности техническим решением является способ превращения алифатических углеводородов C2-C12 в высокооктановый компонент бензина или концентрат ароматических углеводородов, осуществляемый при температуре 250-650 Недостатками данного способа являются многостадийность получения, сложный состав многокомпонентного катализатора и недостаточно высокий выход ароматических углеводородов из углеводородного сырья. Задача изобретения – получение активного и селективного катализатора для процесса превращения алифатических углеводородов С2-С12 в высокооктановый бензин и/или ароматические углеводороды. Технический результат достигается тем, что предлагаемый катализатор для превращения алифатических углеводородов С2-С12 в высокооктановый бензин и/или ароматические углеводороды получают сухим смешением Н-формы железоалюмосиликата со структурой высококремнеземного цеолита типа Н-ZSM-5 с силикатным модулем SiO2/Аl2O3=20-160, SiO2/Fe2O3=30-5000, по крайней мере, с одним соединением из группы медь, цинк, галлий, лантан, молибден, рений в количестве 0,1-10,0 мас.%, в качестве модифицирующего металла; с соединением бора, фосфора или их смеси в количестве 0,1-5,0 мас.%, в качестве упрочняющей добавки; с бемитом или оксидом алюминия – остальное до 100,0 мас.%, в качестве связующего; с последующей механохимической обработкой в вибромельнице в течение 0,1-72 ч, формовкой катализаторной массы в гранулы или таблетки, сушкой и катализатор сформирован в процессе термообработки при 550-600 Увеличение активности катализатора и выхода ароматических углеводородов из углеводородного сырья достигается за счет получения железоалюмосиликата со структурой высококремнеземного цеолита типа ZSM-5 на стадии гидротермального синтеза. Дополнительное введение в железоалюмосиликат металлов – модификаторов в количестве 0,1-10,0 мас.% позволяет увеличить выход высокооктанового бензина и ароматических углеводородов из алифатических углеводородов С2-С12. Железоалюмосиликат (ЖАС) со структурой высококремнеземного цеолита типа H-ZSM-5 получают гидротермальной кристаллизацией при 120-180 Для перевода в Н-форму железоалюмосиликат декатионируют обработкой 25% раствором NH4Cl (10 мл раствора на 1 г цеолита) при 90 Катализатор для превращения алифатических углеводородов C2-C12 в высокооктановый бензин и/или ароматические углеводороды получают сухим смешением Н-формы ЖАС с силикатным модулем SiO2/Al2O3=20-160, SiO2/Fе2O3=30-5000 со структурой цеолита типа H-ZSM-5, по крайней мере, с одним соединением из группы медь, цинк, галлий, лантан, молибден, рений или их смеси в количестве 0,1-10,0 мас.%, в качестве модифицирующего металла; с соединением бора, фосфора или их смеси в количестве 0,1-5,0 мас.% в качестве упрочняющей добавки; с бемитом или оксидом алюминия – остальное до 100,0 мас.% в качестве связующего. Затем полученную смесь подвергают механохимической обработке в вибромельнице в течение 0,1-72 ч, после этого катализаторную массу формуют, сушат и прокаливают при 550-600 Синтезированные цеолитные катализаторы (как до, так и после смешения с компонентами) можно обрабатывать водяным паром (100%) при 450-550 Предлагаемое изобретение иллюстрируется следующими примерами. Пример 1. К 200 г жидкого стекла (29% SiO2, 9% Na2O, 62% H2O) при перемешивании добавляют 11,8 г гексаметилендиамина (R) в 100 мл Н2О, 24,15 г Аl(NO3)3 Затем 70 г H-ZSM-5 с силикатным модулем SiO2/Al2O3=30 смешивают с 35,29 бемита АlO(ОН) и подвергают механохимической обработке в вибромельнице в течение 8 ч. Полученный порошок формуют в гранулы или таблетки, сушат их 2 ч при 20-30 Полученный цеолитсодержащий катализатор имеет состав, мас.%: H-ZSM-5 (SiO2/Al2O3=30) 70 Аl2О3 30 Пример 2. H-ZSM-5 с силикатным модулем SiO2/Al2O3=50 получают так же, как в примере 1, но вместо 24,15 г Аl(NO3)3 Полученный цеолитсодержащий катализатор имеет состав, мас.%: H-ZSM-5 (SiO2/Al2O3=50) 70 Аl2О3 30 Пример 3. Железоалюмосиликат со структурой цеолита H-ZSM-5 получают так же, как в примере 1, но вместо 24,15 г Аl(NO3)3 Затем 70 г ЖАС с силикатным модулем SiO2/Al2O3=60, SiO2/Fe2O3=65 смешивают с 1,77 г Н3ВО3, с 34,12 г АlO(ОН) и подвергают механохимической обработке в вибромельнице в течение 8 ч. Полученный порошок формуют в гранулы или таблетки, сушат их 2-3 ч при 20-30 Полученный цеолитсодержащий катализатор имеет состав, мас.%: Железоалюмосиликат 70 В2О3 1 Аl2О3 29 Пример 4. Железоалюмосиликат со структурой цеолита H-ZSM-5 получают так же, как в примере 1, но вместо 24,15 г Аl(NО3)3 Затем 70 г ЖАС с силикатным модулем SiO2/Аl2О3=55, SiO2/Fе2О3=550 смешивают с 1,77 г Н3ВО3, с 34,12 г АlO(ОН) и подвергают механохимической обработке в вибромельнице в течение 12 ч. Полученный порошок формуют в гранулы или таблетки, сушат их 2-3 ч при 20-30 Полученный цеолитсодержащий катализатор имеет состав, мас.%: Железоалюмосиликат 70 В2O3 1 Аl2О3 29 Пример 5. 70 г ЖАС с силикатным модулем SiO2/Al2O3=60, SiO2/Fe2O3=65 смешивают с 6,08 г Сu(NО3)2 Полученный цеолитсодержащий катализатор имеет состав, маc.%: Железоалюмосиликат 70 CuO 2 В2O3 1 Аl2О3 27 Пример 6. Так же, как в примере 5, но вместо ЖАС с силикатным модулем SiO2/Аl2О3=60, SiO2/Fe2O3=65 берут ЖАС с силикатным модулем SiO2/Аl2O3=55, SiO2/Fe2O3=550, мас.%: Железоалюмосиликат 70 CuO 2 В2O3 1 Аl2О3 27 Пример 7. 70 г ЖАС с силикатным модулем SiO2/Аl2О3=55, SiO2/Fe2O3=550 смешивают с 7,31 г Zn(NO3)2 Полученный цеолитсодержащий катализатор имеет состав, маc.%: Железоалюмосиликат 70 ZnO 2 В2О3 1 Аl2O3 27 Пример 8. Так же, как в примере 7, но катализатор дополнительно обрабатывают водяным паром. Для этого цеолитсодержащий катализатор после прокаливания загружают в реактор и подвергают термопаровой обработке водяным паром (100%) при 480 Пример 9. Так же, как в примере 7, но вместо 7,31 г Zn(NO3)2 Полученный цеолитсодержащий катализатор имеет состав, маc.%: Железоалюмосиликат 70 ZnO 5 Р2O5 1 Аl2О3 24 Пример 10. Так же, как в примере 7, но вместо 7,31 г Zn(NО3)2 Полученный цеолитсодержащий катализатор имеет состав, маc.%: Железоалюмосиликат 70 ZnO 1 Gа2О 1 В2O3 1 Аl2О 27 Пример 11. Так же, как в примере 10, но катализатор дополнительно обрабатывают водяным паром. Для этого цеолитсодержащий катализатор после прокаливания загружают в реактор и подвергают термопаровой обработке водяным паром (100%) при 520 Пример 12. Так же, как в примере 7, но вместо 7,31 г Zn(NO3)2 Полученный цеолитсодержащий катализатор имеет состав, мас.%: Железоалюмосиликат 70 Rе2O7 0,5 В2О3 1 Аl2О3 28,5 Пример 13. Так же, как в примере 7, но вместо 7,31 г Zn(NO3)2 Полученный цеолитсодержащий катализатор имеет состав, мас.%: Железоалюмосиликат 70 МоО3 2 В2О3 1 Аl2О3 27 Пример 14. Так же, как в примере 7, но вместо 7,31 г Zn(NО3)2 Полученный цеолитсодержащий катализатор имеет состав, маc.%: Железоалюмосиликат 70 Gа2О3 2 В2O3 1 Аl2О3 27 Пример 15. Так же, как в примере 7, но вместо 7,31 г Zn(NO3)2 Полученный цеолитсодержащий катализатор имеет состав, маc.%: Железоалюмосиликат 70 Lа2O3 2 В2О3 1 Аl2O3 27 Полученные катализаторы испытывают в процессе превращения алифати-ческих углеводородов С2-C12 (прямогонной бензиновой фракции 28-185 В процессе превращения смеси алифатических углеводородов С2-С12 (прямогонной бензиновой фракции 28-185 Приведенные в таблице примеры уточняют изобретение, не ограничивая его. Как видно из примеров катализаторов 1-16 таблицы катализаторы 3-15 имеют более высокий выход (60-78%) жидких продуктов реакции – высокооктанового бензина из смеси алифатических углеводородов С2-С12, чем катализатор (пример 16) по прототипу Пат. RU N 2165293. Таким образом, предлагаемые катализаторы для превращения алифатических углеводородов С2-С12 в высокооктановый бензин и/или ароматические углеводороды на основе железоалюмосиликата со структурой высококремнеземного цеолита типа H-ZSM-5 с силикатным модулем SiO2/Аl2О3=20-160, SiO2/Fе2О3=30-5000 и модифицированные, по крайней мере, одним соединением из группы медь, цинк, галлий, лантан, молибден, рений или их смеси в количестве 0,1-10,0 маc.% позволяют увеличить выход высокооктанового бензина до 60-78% и ароматических углеводородов до 41-42% из алифатических углеводородов С2-С12. Предлагаемый способ позволяет значительно упростить технологию получения катализатора по сравнению с существующими способами за счет исключения нескольких стадий: стадии осаждения гидрооксида алюминия, пропитки соответствующими солями металлов и других, как следствие, отсутствуют сточные воды и вредные выбросы. Предварительная механохимическая активация смеси исходных компонентов позволяет значительно снизить температуру формирования активных компонентов и получить высокодисперсный, активный и селективный катализатор. Введение металлов-модификаторов в количестве 0,1-10,0 мас.% в железоалюмосиликат позволяет увеличить выход высокооктанового бензина до 62-76% и ароматических углеводородов до 41-42% из алифатических углеводородов. Способ получения высокооктанового бензина и/или ароматических углеводородов из алифатических углеводородов 2-С12 в присутствии катализаторов на основе железоалюмосиликата со структурой высококремнеземного цеолита типа H-ZSM-5 с силикатным модулем SiO2/Al2O3=20-160, SiO2/Fe2O3=30-5000 и модифицированные, по крайней мере, одним соединением из группы медь, цинк, галлий, лантан, молибден, рений в количестве 0,1-10,0 мас.% позволяет увеличить выход высокооктанового бензина и ароматических углеводородов из алифатических углеводородов С2-С12, чем в присутствии катализатора (пример 16) по прототипу Пат. RU N 2165293. Формула изобретения
1. Катализатор для превращения алифатических углеводородов С2-С12 в высокооктановый бензин и/или ароматические углеводороды, содержащий цеолит со структурой ZSM-5, связующий компонент – оксид алюминия, модифицирующий компонент, отличающийся тем, что он содержит железоалюмосиликат с силикатным модулем SiO2/Al2O3 = 20-160, SiO2/Fe2O3 = 30-5000; в качестве модифицирующего компонента содержит по крайней мере один оксид элемента, выбранный из группы медь, цинк, галлий, лантан, молибден, рений; в качестве упрочняющей добавки содержит оксид бора, фосфора или их смеси; катализатор сформирован в процессе термообработки и имеет следующий состав, мас. % (в пересчете на оксид): Железоалюмосиликат с силикатным модулем SiO2/Al2O3 = 20-160, SiO2/Fe2O3 = 30-5000 60,0-80,0 Модифицирующий компонент 0,1-10,0 Оксид бора, фосфора или их смесь 0,5-5,0 Оксид алюминия Остальное 2. Способ получения катализатора по п.1, отличающийся тем, что железоалюмосиликат со структурой цеолита типа ZSM-5 с силикатным модулем SiO2/Al2O3 = 20-160, SiO2/Fe2O3 = 30-5000 получают гидротермальной кристаллизацией реакционной смеси при 120-180 3. Способ получения катализатора по п.2, отличающийся тем, что катализатор получают сухим смешением железоалюмосиликата, модифицирующих соединений металлов, упрочняющих добавок и связующего с последующей механохимической обработкой в вибромельнице в течение 0,1-72 ч, формовкой катализаторной массы, сушкой при 100-110 4. Способ превращения алифатических углеводородов С2-С12 в высокооктановый бензин и/или ароматические углеводороды в присутствии катализатора, отличающийся тем, что используют катализатор по п.1 и процесс превращения алифатических углеводородов С2-С12 в высокооктановый бензин и/или ароматические углеводороды проводят при 300 – 550 PC4A – Регистрация договора об уступке патента Российской Федерации на изобретение
(73) Патентообладатель(и):
(73) Патентообладатель:
Дата и номер государственной регистрации перехода исключительного права: 09.07.2007 № РД0023938
Извещение опубликовано: 20.08.2007 БИ: 23/2007
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 04.02.2008
Извещение опубликовано: 27.06.2009 БИ: 18/2009
|
||||||||||||||||||||||||||