Патент на изобретение №2231004

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2231004 (13) C1
(51) МПК 7
F24J3/00, F25B30/00
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 25.02.2011 – прекратил действие

(21), (22) Заявка: 2002128562/06, 23.10.2002

(24) Дата начала отсчета срока действия патента:

23.10.2002

(45) Опубликовано: 20.06.2004

(56) Список документов, цитированных в отчете о
поиске:
RU 2159901 C2, 27.11.2000.
RU 2160417 C2, 10.12.2000.
SU 1329629 А3, 07.08.1987.
US 3385287 A, 28.05.1968.
EP 0833114 A4, 01.04.1998.

Адрес для переписки:

656037, г.Барнаул, ул. Карагандинская, 6а, С.М. Радченко

(72) Автор(ы):

Петраков А.Д. (RU),
Радченко С.М. (RU),
Яковлев О.П. (RU)

(73) Патентообладатель(и):

Петраков Александр Дмитриевич (RU),
Радченко Сергей Михайлович (RU),
Яковлев Олег Павлович (RU)

(54) РОТОРНЫЙ КАВИТАЦИОННЫЙ НАСОС-ТЕПЛОГЕНЕРАТОР

(57) Реферат:

Изобретение относится к конструкциям насосов-теплогенераторов для использования в локальных системах отопления и горячего водоснабжения и нагрева жидкостей в различных технологических системах. Насос-теплогенератор содержит полый корпус с патрубками подвода нагреваемой жидкости и отвода нагретой жидкости, ротор с кольцом ротора, имеющим цилиндрические отверстия, кольцо статора с внезапно расширяющимися отверстиями и стержневые излучатели. Входной и выходной диаметры отверстий в кольце статора, а также длина расширенной части указанных отверстий находятся в определенных зависимостях. Изобретение направлено на повышение эффективности преобразования механической энергии в тепловую за счет более полного использования кинетической энергии струй жидкости и упрощение конструкции насоса. 1 з.п. ф-лы, 3 ил.

Изобретение относится к конструкциям насосов-теплогенераторов, которые могут быть использованы преимущественно в локальных системах теплоснабжения промышленных зданий, цехов, общественных и жилых помещений, а также для нагрева жидкостей в различных технологических системах.

Известна конструкция насоса-теплогенератора (патент Российской Федерации RU №2160417), в котором имеется полый корпус со всасывающим патрубком для подвода нагреваемой жидкости и нагнетательным патрубком для отвода нагретой жидкости. Внутри корпуса расположены: ротор в виде центробежного колеса с отверстиями по периферии и статор с отверстиями. Статор установлен коаксиально ротору. Отверстия ротора выполнены в виде коноидальных насадков, сужающихся в сторону статора. Отверстия статора выполнены в виде внезапно расширяющихся насадков с переходом в конические расходящиеся насадки с углом расширения =90.

Недостатками известного устройства являются:

– отсутствие зон кавитации в отверстиях ротора,

– форма отверстий статора недостаточно использует энергию транзитной струи жидкости в целях расширения зон кавитации, являющихся основными источниками тепловыделения.

Известен наиболее близкий к изобретению роторный насос-теплогенератор (патент Российской Федерации RU №2159901), в котором имеется полый корпус со всасывающим патрубком для подвода нагреваемой жидкости и нагнетательным патрубком для отвода жидкости. Внутри корпуса концентрично друг другу расположены ротор и статор. В периферийной части ротора, в кольцевой насадке, отверстия выполнены в виде внешних цилиндрических насадков Вентури, а отверстия в статоре выполнены расширяющимися в сторону корпуса и имеющими форму внезапно расширяющихся насадков.

Недостатками известного устройства являются:

– недостаточное использование энергии транзитной струи жидкости в отверстиях статора в целях образования гидродинамической кавитации,

– не проработано соотношение диаметров отверстий в кольцах статора (начальный диаметр и диаметр расширенного участка) в целях максимального развития кавитации в водоворотных зонах;

– не определена оптимальная длина расширенного участка отверстий статора по отношению к высоте уступа K=(D/2 – d/2), где D – выходной диаметр отверстий; d – входной диаметр отверстий.

Задача изобретения – создание устройства, позволяющего более полно использовать кинетическую энергию транзитной части струи жидкости в отверстиях статора для нагрева жидкости за счет оптимального соотношения диаметров и длины расширенной части отверстий, размещения стержневых излучателей и кавитационных эффектов преобразования кинетической энергии в тепловую.

Поставленная задача достигается тем, что в роторном кавитационном насосе-теплогенераторе, содержащем полый корпус со всасывающим патрубком для подвода нагреваемой жидкости и нагнетательным патрубком для отвода нагретой жидкости, внутри которого расположены: ротор с кольцом ротора, имеющим цилиндрические отверстия, и статор с кольцом статора, имеющим внезапно расширяющиеся отверстия, согласно изобретению отверстия в кольце статора выполнены внезапно расширяющимися с соотношением входного и выходного диаметров отверстий d/D=0,6, а длина расширенной части отверстий находится в зависимости L=5(D/2 – d/2). По оси отверстий кольца статора могут быть установлены стержневые излучатели, имеющие острые кромки с углом заточки до 30 и расширенные части.

На фиг.1 изображен поперечный разрез роторного кавитационного насоса-теплогенератора, состоящего из следующих основных деталей: 1 – полый корпус; 2 – вал ротора; 3 – кольцо ротора; 4 – кольцо статора; 5 – отверстия в кольце статора в виде внезапно расширяющихся насадков; 6 – стержневые излучатели.

На фиг.2 изображено положение колец 3, 4 ротора и статора при совмещении отверстий. В данном положении происходит образование зон кавитации в кольце ротора – зона А, в кольце статора – зона Б, на стержневом излучателе 6 – зона С.

На фиг.3 изображено положение колец 3, 4 ротора и статора при смещении, несовпадении отверстий. В момент перекрытия отверстий в зоне А возникает гидравлический удар, способствующий исчезновению (схлопыванию) кавитационных пузырьков, а в зонах Б и С кавитационные пузырьки охлопываются под действием давления жидкости Р2 в корпусе 1 насоса-теплогенератора.

Насос-теплогенератор содержит корпус 1 (фиг.1) с патрубками для подвода и отвода нагреваемой жидкости, внутри которого расположены стержневые излучатели 6, и кольцо 4 статора (фиг.1, 2, 3). Внутри корпуса 1 концентричного кольцу 4 статора расположен ротор с кольцом 3 ротора, закрепленные на валу 2.

В периферийной части ротора отверстия выполнены цилиндрическими, а отверстия 5 в кольце 4 статора выполнены внезапно расширяющимися с отношением диаметров d/D=0,6, где d – входной диаметр отверстий; D – выходной диаметр отверстий.

Длина расширенной части отверстий 5 определяется как L=5(D/2 – d/2).

По оси отверстий 5 кольца 4 статора расположены стержневые излучатели 6, предназначенные для образования водоворотных зон С и ультразвуковой кавитации, возникающей на острых кромках излучателей 6 – “клиновой тон”.

Работает описанный роторный кавитационный насос-теплогенератор следующим образом.

Нагреваемая жидкость по всасывающему патрубку полого корпуса 1 поступает в ротор с кольцом 3 ротора. Ротор, вращаемый валом 2, лопатками воздействует на жидкость, сообщая ей кинетическую энергию и направляя ее в отверстия кольца 3 ротора. Жидкость, проходя через отверстия кольца 3 ротора, образует водоворотные зоны А с пониженным давлением и образованием в ней кавитационных пузырьков. Транзитная струя жидкости в пределах зоны А также насыщается кавитационными пузырьками.

В момент совмещения отверстий кольца 3 ротора и отверстий 5 кольца 4 статора (фиг.2) жидкость, проходящая через отверстия ротора, образующая водоворотные зоны А и обладающая большой кинетической энергией, попадая во внезапно расширяющиеся отверстия 5 кольца 4 статора, образует водоворотные зоны Б. Транзитные же части струй, огибая стержневые излучатели 6, образуют водоворотные зоны С, которые являются центрами образования кавитационных пузырьков (зоны А, Б, С). Наиболее выгодны, с точки зрения образования кавитационных пузырьков, соотношение диметров отверстий 5 кольца 4 статора d/D=0,6 (фиг.3) и длины отверстий 5 расширенной части L=5(D/2 – d/2) (фиг 2).

Кроме того, при натекании транзитных струек жидкости, проходящих через внезапно расширяющиеся отверстия 5 кольца 4 статора, на клиновидные края стержневых излучателей 6 появляется “клиновой тон”, это ультразвук, возникающий при угле заточки кромки около 30°. Транзитная часть струек жидкости, попадая на острые края излучателей 6, разбивается этими краями так, что с обеих сторон появляются вихри.

В момент перекрытия отверстий кольца 3 ротора боковыми стенками (перегородками) кольца 4 статора (фиг.3) происходит резкое повышение давления в отверстиях кольца 3 ротора (гидравлические удары), способствующие захлопыванию кавитационных пузырьков в зонах А, а статическим давлением Р2, поддерживаемым в корпусе теплогенератора, обеспечивается захлопывание кавитационных пузырьков в зонах Б и С и в вихрях, расходящихся от острых кромок стержневых излучателей 6.

Выделившаяся в результате захлопывания кавитационных пузырьков энергия передается нагреваемой жидкости.

Варьируя расход протекающей жидкости, изменяют соотношение давлений Р1 и Р2, которые при наложении колебаний от гидравлических ударов в роторе и стержневых излучателей 6, при известной скорости вращения ротора, способствуют возникновению автоколебательного режима в гидравлической системе.

С момента установления режима автоколебаний скорость нагрева жидкости возрастает, а потребление энергии на приводе теплогенератора снижается.

Указанный насос-теплогенератор можно применять для отопления и горячего водоснабжения жилых зданий и промышленных помещений, а также для нагрева жидкостей в технологических процессах.

Формула изобретения

1. Роторный кавитационный насос-теплогенератор, имеющий полый корпус со всасывающим патрубком для подвода нагреваемой жидкости и нагнетательным патрубком для отвода нагретой жидкости, внутри которого расположены ротор с кольцом ротора, имеющим цилиндрические отверстия, и статор с кольцом статора, имеющим внезапно расширяющиеся отверстия, и стержневыми излучателями, отличающийся тем, что отверстия в кольце статора выполнены внезапно расширяющимися с соотношением входного и выходного диаметров отверстий d/D=0,6, а длина расширенной части отверстий находится в зависимости L=5(D/2 – d/2).

2. Роторный кавитационный насос-теплогенератор по п.1, отличающийся тем, что по оси отверстий кольца статора установлены стержневые излучатели, имеющие острые кромки с углом заточки до 30 и расширенные части.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 24.10.2005

Извещение опубликовано: 10.11.2006 БИ: 31/2006


Categories: BD_2231000-2231999