Патент на изобретение №2229565

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2229565 (13) C1
(51) МПК 7
E02F3/85, E02F9/22
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 25.02.2011 – прекратил действие

(21), (22) Заявка: 2002132639/032002132639/03, 04.12.2002

(24) Дата начала отсчета срока действия патента:

04.12.2002

(45) Опубликовано: 27.05.2004

(56) Список документов, цитированных в отчете о
поиске:
ДОБРОНРАВОВ С.С. Строительные машины и оборудование. Справочник. – М.: Высшая школа, 1991. SU 491238 A, 05.11.1975. SU 1027421 A, 07.07.1983. SU 1795140 A1, 15.02.1993. RU 2120556 C1, 20.10.1998. RU 2175611 C1, 10.11.2001. RU 2184252 C1, 27.06.2002. RU 2131521 C1, 10.06.1999. US 4567857 A, 04.02.1986. US 5592387 A, 07.01.1997. DE 19802643 A, 30.07.1998. GB 1393382 A, 07.05.1975.

Адрес для переписки:

191123, Санкт-Петербург, ул. Захарьевская, 22, ВИТУ, бюро по изобретательству и патентной работе

(72) Автор(ы):

Шаволов А.С. (RU),
Савчук А.Д. (RU),
Шульгин В.В. (RU),
Ваучский Н.П. (RU)

(73) Патентообладатель(и):

Военный инженерно-технический университет (RU)

(54) СПОСОБ АВТОНОМНОГО ЭНЕРГООБЕСПЕЧЕНИЯ ПРИВОДНЫХ УСТРОЙСТВ СТРОИТЕЛЬНЫХ И ПОДОБНЫХ ИМ МАШИН

(57) Реферат:

Изобретение относится к приводу в основном мобильных строительных и подобных им машин: коммунальных, лесозаготовительных, сельскохозяйственных и т.п. Техническим результатом изобретения является обеспечение возможности осуществления раздельного или совместного запуска всех двигателей, включая и ДВС, который целесообразно в данном многомоторном пневмогазовом приводе использовать только на привод ходовой части машин, отдавая все остальные функции другим двигателям. Для этого система энергообеспечения включает ДВС и двигатели рабочих органов (РО) с единым источником их питания от газобаллонной системы компримированного газа при подаче высоконапорного газа в двигатели РО. От них газ низкого давления поступает либо в ресивер использованного газа с последующим его восстановлением до высоконапорного состояния путем пропуска газа (например, через многоступенчатый тепловой компрессор), либо из газа низкого давления создают газомоторное топливо для нужд потребления ДВС. 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к приводу в основном мобильных строительных и подобных им машин: коммунальных, лесозаготовительных, сельскохозяйственных и т.п.

Современные строительные машины в стационарном исполнении имеют электрический, и при своей сложности, многомоторный (многодвигательный) привод, а передвижные машины – многомоторный дизель-гидравлический привод [1]. В последнем случае схема привода получается конструктивно более сложной. Главенствующая роль в ней принадлежит двигателю внутреннего сгорания (ДВС) – это, образно говоря, “матка”, обеспечивающая работу всех остальных двигателей привода рабочих органов (РО) машины. Без него невозможно запустить ни один из вторичных двигателей. И в этом проявляется определенный недостаток дизель-гидравлического привода по сравнению с многомоторным электрическим. Второй недостаток многомоторного привода от ДВС состоит в нестабильности загрузки последнего на разных стадиях цикла работы машин.

Поясним это на примере работы скрепера [1], наиболее тяжелая стадия цикла работы которого – это копание грунта с набором его в ковш. Для скрепера емкостью ковша 10-15 м3 работа на этой стадии продолжается всего 3-4 минуты, за которые надо максимально “выложиться”, иначе при неполном наборе грунта дальнейшая чисто транспортная стадия работы машины уже ничего “не добавит” и весь рабочий ее цикл будет непроизводительным. В связи с этим при проектировании скреперов установленную мощность ДВС выбирают именно по копанию и тем самым работу по достижению заданной производительности выдерживают. Но в то же время проигрывают в вопросе полного использования мощности ДВС в транспортных стадиях работы скрепера, в особенности при передвижении его в незагруженном грунтом состоянии, когда при большой базе машины и плохом состоянии подвозных грунтовых дорог развивать повышенные скорости передвижения, даже при потенциальных возможностях ходового двигателя, не представляется возможным.

В связи с этим актуальной задачей данного изобретения является разработка такой системы автономного энергообеспечения строительных машин (СМ), при которой ДВС был бы связан только с механизмом передвижения машины, а все остальные приводные устройства ее РО имели бы свой источник энергообеспечения, а следовательно, были бы независимыми от ДВС. Иными словами, ставится задача замены существующего дизель-гидравлического привода на иной привод, по своим достоинствам приближающийся к многомоторному электрическому, у которого все двигатели можно включать в работу по отдельности в любой последовательности или совместно и когда выбор установленной мощности каждого двигателя определяется условием только его максимальной загрузки. Причем все это надо выполнить при уже устоявшихся конструкциях самих двигателей – ДВС, цилиндров возвратно-поступательного действия и вращателях.

Решение поставленной задачи может быть достигнуто только при успешном выборе энергоносителя для всех упомянутых и разных по конструкции и принципу действия двигателей.

И здесь в первую очередь следует обратить внимание на использование природного газа. По его применению в качестве газомоторного топлива (ГМТ) для ДВС в чисто транспортных средствах уже накоплен определенный опыт [2]. Причем природный газ как топливо может использоваться в трех видах: в сжиженном состоянии (СПГ), с помощью газогидратных образований и в виде компримированного газа (КПГ). СПГ хранится при давлениях, близких к атмосферному, а поэтому потенциальной энергией газового расширения, необходимой для привода цилиндров и вращателей, не обладает. Возможность использования газогидратных образований стала известно совсем недавно (заявка №2000110447/06 от 27.04.2000 по кл. F 02 B 43/00). Сущность этого нововведения состоит в использовании метана, растворенного в водяном льду при кристаллизации воды, причем газ на транспортном средстве получается благодаря плавлению или растворению газогидратного льда. Отсюда ясно, что это опять же может быть использовано только в качестве топлива для ДВС и не более. И остается только КПГ. Опыт использования его в качестве ГМТ для чисто транспортных средств составляет уже несколько десятилетий. Это наиболее доступное средство энергопитания дизелей, имеющее, правда, и определенный недостаток – значительно меньшую по сравнению с СПГ компактность при баллонном своем содержании. Чтобы уменьшить этот недостаток, стремятся увеличить давление КПГ в баллонах. В настоящее время оно составляет 20 мПа, однако имеются промышленные разработки на 40 мПа. Такой подход существенно повысит беззаправочный пробег машины и снизит габаритность и вес ее ГРС (газораспределительной системы), однако в то же время еще более уменьшит КПД использования самого КПГ как энергоносителя. Дело в том, что для питания дизелей нужно газ разряжать до давления, близкого к атмосферному, в результате чего КПГ, вышедший из ГБС (газобаллонная система), проходя через редукционную систему двигателя и переходя тем самым в состояние ГМТ, попросту теряет заключенную ранее в баллонах потенциальную энергию расширения, причем теряет впустую, ибо полезно ее расходовать в чисто транспортных средствах (автомобилях) фактически не на что. А вот в СМ есть на что и КПГ для СМ – это гораздо более значимое, чем КПГ для автомобилей. И возникает интересная ситуация: самоходная СМ конструктивно сложнее любого автомобиля, но условия использования на ней КПГ более благоприятны и главное – несравненно более экономичны, если их относить к суммарной мощности всех установленных на машине двигателей.

Из сказанного можно сделать важный вывод: все приводные устройства СМ могут иметь единое энергообеспечение от ГБС с КПГ, по при разном физическом состоянии энергоносителя: при высоком его напоре воздействовать на двигатели РО и, уже сбросив там давление, переходить в состояние ГМТ для ДВС. При этом сама СМ конструктивно может быть перекроена под схему привода, близкую к идеальной – многомоторной электрической. И ДВС уже не будет основным ведущим двигателем, а двигатели РО вторичными и им ведомыми. Все двигатели, как в электроприводе, будут равноправными.

Итак, речь идет о преобразовании принятого за прототип широко распространенного дизель-гидравлического многомоторного привода [1] при питании его дизеля от КПГ [2] в многомоторный пневмогазовый привод с дизелем, т.е. ДВС добавляется здесь уже как бы “в придачу”. Предложенный способ автономного энергообеспечения приводных устройств СМ поясняется схемой, приведенной на чертеже, где представлены: ГБС в виде нескольких основных баллонов сжатого газа, сборного ресивера использованного газа и резервного баллона, система управления пневмоприводами СМ (СУПрСМ), сами пневмоприводы в виде пневмоцилиндров и пневмовращателей, многоступенчатый тепловой компрессор (МТК), ДВС и трубопроводы газовых коммуникаций с запорными вентилями и редукторами, каждая совокупность положений которых соответствует определенному режиму работы данной системы. При этом запорным вентилям Bi и редукторам Pi присвоен порядковый номер (i=1,2,3…), определяющий их положение на трубопроводах. Каждый из этих элементов может находиться в двух положениях: “О” – открыт; “З” – закрыт. Так, к примеру, обозначение “В3З” говорит о том, что вентиль №3 закрыт.

В предложенную систему включен МТК, по кл. МКИ F 04 B 19/24, его назначение – повышать давление уже использованного в пневмодвигателях газа для повторного его применения в тех же целях. Присутствие МТК становится необходимым, если данная система работает без ДВС. При работающем ДВС МТК может и отсутствовать. В этом случае весь газ низкого давления, прошедший через пневмодвигатели РО, сразу же будет направлен к ДВС. И все же отсутствие МТК в предложенной системе сужает широту режимности ее использования и общую эффективность – ведь МТК работает также от тепла сгорания газа. Предложенная энергосистема имеет следующие режимы ее функционирования:

1. Работа ДВС без пневмоприводов;

2. Работа ДВС и пневмоприводов;

3. Работа (кратковременная) пневмоприводов без работы ДВС;

4. Работа пневмоприводов без работы ДВС и с использованием МТК;

5. Работа ДВС и пневмоприводов с использованием МТК;

6. Полное опорожнение газовых баллонов в ДВС;

7. Заправка газовых баллонов от заправщика КПГ. Достижение указанных режимов работы в зависимости от положений вентилей и редукторов иллюстрируется таблицей.

Особый интерес представляют режимы 3 и 4, при которых, подключая к коленвалу ДВС уже работающий вращатель, прокручивают тем самым дизель “сзади”, а уже потом переходят на режимы 1, 2, 5. И это тоже существенное техническое достижение, облегчающее запуск дизеля в холодное время.

В предложенной энергосистеме при замене гидропривода на пневмопривод отпала необходимость в установке дорогостоящих и капризных при своей эксплуатации гидронасосов. Гидрораспределители заменены на пневмораспределители. Количество силовых цилиндров сохранилось, количество вращателей пополнилось еще одним, кинематически связанным с коленвалом ДВС, но это опять же то, что весьма полезно.

Полагаем, что данное техническое решение в полной мере соответствует всем критериям изобретения.

Отметим, что из технической и патентной литературы не известно применения в СМ высоконапорного пневмопривода их РО и тем более использования для этих целей КПГ. Известна лишь низконапорная (до 0,6 мПа) система пневмоуправления. Но эти вещи сопоставимы лишь по присутствию в них слова “пневмо” и не более. Все это позволяет утверждать, что данное предложение обладает мировой новизной.

Использование для всех двигателей единого энергоносителя от КПГ и возможность так называемого “обратного” их запуска – вначале двигателей РО, а потом уже и ДВС – это совершенно новый взгляд на решаемую проблему и в этом проявляется критерий “изобретательский уровень”.

Критерий “промышленная применимость” подтверждается возможностью технической осуществимости данного способа и его технико-экономическими достоинствами, которые проявляются в следующем:

– в повышении КПД использования самого энергоносителя КПГ – вначале его разряжают в пневмодвигателях РО, а уже оттуда направляют для использования в качестве ГМТ для ДВС;

– в работе предложенной системы энергопитания приводов на различных режимах, в том числе осуществляющих полную функциональную независимость двигателей РО от ДВС;

– в возможности частичного восстановления высоконапорного энергоносителя из газа низкого давления за счет его пропуска через МТК;

– в новых принципах проектирования СМ, когда ДВС становится рядовым двигателем и его кинематически связывают только с механизмом передвижения машины, а все остальное обслуживается независимыми от ДВС самостоятельными пневмодвигателями.

Последнее является, пожалуй, самым важным и принципиально новым достоинством предложенного способа.

Литература

1. С.С.Добронравов. Строительные машины и оборудование. Справочник. – М.: Высшая школа, 1991 г.

2. Ю.Н.Васильев и др. Транспорт на газе. – М.: Недра, 1992 г.

Формула изобретения

1. Способ автономного энергообеспечения приводных устройств строительных и подобных им машин путем трубопроводной подачи энергоносителей для питания основного двигателя внутреннего сгорания (ДВС) и двигателей привода рабочих органов (РО) машины, отличающийся тем, что работу всех приводных устройств осуществляют от единого источника энергопитания, в качестве которого выбирают размещаемый на машине в газобаллонной системе компримированный природный газ, который через управляемые запорные вентили подают совместно или по отдельности в любой последовательности на двигатели приводов РО и ДВС, причем газ низкого давления, уже прошедший через двигатели РО, при отсутствии надобности в его немедленном дальнейшем применении в качестве газового топлива для ДВС, направляют в ресивер использованного газа, откуда забирают его с повышением давления (например, через многоступенчатый тепловой компрессор) и подают в резервный баллон повторно сжатого газа.

2. Способ энергообеспечения приводных устройств по п.1, отличающийся тем, что в холодное время запуск ДВС облегчают подключением к его коленвалу уже работающего пневмовращателя.

РИСУНКИ

Рисунок 1


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 05.12.2004

Извещение опубликовано: 20.07.2006 БИ: 20/2006


Categories: BD_2229000-2229999