Патент на изобретение №2151128
|
||||||||||||||||||||||||||
(54) ОГНЕУПОРНАЯ МАССА
(57) Реферат: Изобретение относится к составам огнеупорных масс для литейного производства и производства огнеупоров и может быть использовано в машиностроительной и металлургической отраслях народного хозяйства. Разработанный огнеупорный состав содержит, мас.%: глина огнеупорная 80-95; кварц-турмалиновый отход Солнечного горно-обогатительного комбината Комсомольского района 5-20. Кварц-турмалиновый отход имеет следующий состав, мас.%: Аl2O3 – 13,75; SiO2 – 61,15; Fe2О3 – 5,00; FeO – 8,10; TiO2 – 0,68; CaO – 1,20; MgO – 3,30; Na2O – 1,25; K2O – 1,60; B2O3 – 1,90; ппп – 2,02. Применение огнеупорной массы позволит понизить энергоемкость производства огнеупорных изделий и повысить их физико-механические свойства. 1 табл. Изобретение относится к составам огнеупорных масс для литейного производства и производства огнеупоров и может быть использовано в машиностроительной и металлургической отраслях народного хозяйства. Известен состав [1] огнеупорной массы, содержащий, вес.%: глина огнеупорная 1-11, магний сернокислый 4-10, порошок обожженного магнезита 15-35, шамот – остальное. Данная огнеупорная масса имеет сложный многокомпонентный состав с высокой температурой (согласно [2] – 1575oC) образования жидкой фазы системы MgO-Al2O3-SiO2, что обуславливает высокую стоимость получаемых огнеупорных изделий. Последнее ограничивает диапазон применения огнеупорных изделий из данной массы, например, для футеровки туннельных обжиговых печей. Разработан состав огнеупорной массы системы каолинит – Al2О3-SiO2-B2O3 [3] , который также содержит дорогостоящие компоненты, в частности обогащенный каолинит. При этом температура термической обработки изделий из данной огнеупорной массы достаточно высока (1400-1450oC), а физико-механические характеристики – низкие. Наиболее близким по технической сущности и достигаемому результату является масса системы Al2O3-SiO2, содержащая, вес.%: шамот 48, глина огнеупорная 52 [4]. Фракционный состав шамота при пластическом формировании изделий влажности 16-19% составлял: фракции > 3 мм – 0,8%; фракции < 0,54 мм – 49,0%. Минералогический состав обоженных огнеупорных изделий составлял, вес. %: Al2O3 28; SiO2 48,63. Однако рассматриваемый состав – прототип огнеупорной массы – содержит ряд недостатков, препятствующих получению требуемого технического результата. Процесс получения огнеупорных изделий из состава-прототипа энергоемок. Изделия, получаемые из рассматриваемой огнеупорной массы, подвергаются высокотемпературной (1300 -1450oC) обработке. Кроме того, получение шамота из огнеупорных глин также приводит к дополнительным затратам. При этом изделия имеют недостаточно высокие физико-механические свойства и химическую стойкость к воздействию шлаков. Эти и другие недостатки устраняются предлагаемым техническим решением. Сущность изобретения заключается в том, что предлагается состав огнеупорной массы, состоящий, вес.%: глина огнеупорная 80-95; кварц-турмалиновый отход (КТО) Солнечного горно-обогатительного комбината Комсомольского района минералогического состава, вес.%: Al2O3 – 13,75; SiO2 – 61,15; FeO3 – 5,00; FeO – 8,10; TiO2 – 0,68; СаО – 1,20; MgO – 3,30; Na2O – 1,25; K2O – 1,60; B2O3 – 1,90; ППП – 2,02 5-20. Фракционный состав КТО при пластическом формировании изделий влажности 16-19% составляет: фракции > 3 мм – 0,8%; фракции < 0,54 мм – 49,0%. Минералогический состав отоженных огнеупорных изделий составлял, вес.%: Al2O3 23,142-24,903; SiO2 49,2085-51,094; Fe2O3 3,556-3,784; FeO 1,1745-2,268; TiO2 0,034-0,136; CaO 0,687-0,768; MgO 0,165-0,66; Na2O + K2O 0,1425-0,57; B2O3 0,095-0,38; ппп 2,398-2,467. Задача, решаемая заявляемым составом огнеупорной массы, заключается в повышении физико-механических свойств изготовляемых огнеупорных изделий. Наличие в КТО легкоплавких окислов способствует образованию жидкой фазы в структуре изделия-сырца при более низких температурах, чем температура обжига, что интенсифицирует процесс спекания изделий. Кроме того, при обжиге огнеупоров системы Al2O3-SiO2 B2O3 играет роль активной минирализирующей добавки, которая активизирует процесс образования муллита [3]. Первые зародыши кристаллов муллита образуются уже при 900oC. При дальнейшем росте температуры процесс муллитообразования лишь интенсифицируется. Таким образом, реализуется возможность снижения температуры обжига огнеупорных изделий до 900-950oC при повышении физико-механических свойств последних (таблица). Из таблицы видно, что изменение концентрации КТО в огнеупорной глине приводит к снижению физико-механических свойств изделий. Признаки, характеризующие изобретение: – ограничительные: огнеупорная масса включает огнеупорную глину и кварцсодержащий отход; – отличительные: огнеупорная масса содержит, вес.%: глина огнеупорная 80-95; кварц-турмалиновый отход минералогического состава, вес.%: Al2O3 – 13,75; SiO2 – 61,15; Fe2O3 – 5,00; FeO – 8,10; TiO2 – 0,68; CaO – 1,20; MgO – 3,30; Na2O – 1,25; K2O – 1,60; B2O3 – 1,90; ппп – 2,02 5-20. Причинно-следственная связь между существенными признаками и достигаемым техническим решением осуществляется посредством способности легкоплавких окислов КТО в процессе обжига огнеупорных изделий образовывать жидкую фазу при более низких температурах термообработки, способствуя интенсивному взаимодействию B2O3 и элементов системы Al2O3-SiO2 с образованием муллита 3Al2O3 ![]() 1. Огнеупорная масса. Кабанов B.C., Суворов С.А., Власов В.В., Редько Г. С. Ленингр.технол.ин-т. Авт.св. 963975, СССР. 3аявл. 07.07.80, N 2954516/29-33, опубл. в Б.И., 1982, N 37. МКИ С 04 В 33/22. 2. Стрелов К. К. Теоретические основы технологии огнеупоров. – М.: Металлургия, 1985, с. 234. 4. Мамыкин П.С., Стрелов К.К. Технология огнеупоров. – М.: Металлургия, 1988, с. 266-275. 5. Долотов Г. П. , Кондаков Е.А. Печи и сушила литейного производства: Учебник для техникумов, 2-е изд. , перераб. и доп. – М.: Машиностроение, 1984, 232 с. Формула изобретения
Глина огнеупорная – 80 – 95 Указанный кварц-турмалиновый отход – 5 – 20н РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 03.03.2000
Номер и год публикации бюллетеня: 31-2001
Извещение опубликовано: 10.11.2001
|
||||||||||||||||||||||||||