Патент на изобретение №2228326
|
||||||||||||||||||||||||||
(54) СПОСОБ ПОЛУЧЕНИЯ ДИГИДРОКСИБЕНЗОЛОВ
(57) Реферат: Изобретение относится к органическому синтезу, в частности к способу получения дигидроксибензолов каталитическим окислением фенола закисью азота в присутствии бензола. В качестве катализаторов используют цеолиты ZSM-5, ZSM-11 со связующим оксидом алюминия, оксидом кремния или их смесью. Катализатор предварительно активируют обработкой водяным паром при 500 –1000С. Процесс ведут в проточном реакторе при температуре 250-600°С и продолжительности контакта 0,1-10 с. Предпочтительно использовать инертный газ-разбавитель. Технический результат – повышение стабильности катализатора и увеличение селективности превращения закиси азота в дигидроксибензолы и в фенол. 7 з.п. ф-лы, 3 табл. Изобретение относится к области органического синтеза, более конкретно к способу получения дигидроксибензолов (ДГБ) путем каталитического окисления фенолбензольных смесей закисью азота N2О. Дигидроксибензолы (пирокатехин, резорцин и гидрохинон) относятся к числу важнейших полупродуктов органического синтеза. Существующие методы их получения далеко несовершенны. Они нередко связаны с применением агрессивных реагентов и образованием экологически вредных отходов. Пирокатехин и гидрохинон в настоящее время получают в основном путем окисления фенола пероксидом водорода. В разных вариантах процесса используют различные катализаторы: сильные кислоты (НСlO4, Н3РO4), реагент Фентона либо титаноносиликалиты TS-1. Процесс с использованием TS-1, разработанный фирмой Enichem, обладает рядом преимуществ по сравнению с кислотным и радикальным процессами, он обеспечивает лучшую селективность, большее отношение гидрохинон : пирокатехин и меньшее количество смол [В.Notari. “Synthesis and catalytic properties of titanium containing zeolites”. Stud. Surf. Sci. Catal. 1988, 37, 413-425]. Однако и в этом случае остаются такие недостатки, как наличие растворителя, дезактивация катализатора и необходимость его периодической регенерации, что в случае жидкофазного процесса представляет собой непростую задачу. Кроме того, пероксид водорода – весьма дорогой окислитель, а его термическая нестабильность накладывает значительные ограничения на выбор реакционных условий. Значительный интерес представляло бы создание газофазного процесса окисления фенола в дигидроксибензолы, где в качестве перспективного окислителя могла бы служить закись азота. В последние годы закись азота привлекает значительное внимание исследователей как моноатомный донор кислорода, который оказался особенно эффективным в реакции прямого окисления бензола в фенол [U.S. Patent №5110995, С 07 С 37/60, 1992]. Лучшими катализаторами этой реакции являются Fe-содержащие цеолиты типа пентасил, на которых окисление бензола протекает с селективностью, близкой к 100%. Попытки распространить этот подход на окисление производных бензола, таких как толуол, хлор- и фторбензолы, фенол и др. [А.С. Харитонов, Г.И. Панов, В.И. Соболев. “Гидроксилирование ароматических соединений закисью азота. Новые возможности окислительного катализа на цеолитах”. Успехи химии. 1992, т.61, №11, с.2062-2077], оказались менее успешными. В этих случаях значительно интенсифицируются процессы образования кокса, приводящие к сильной дезактивации катализатора. Один из эффективных приемов, который позволил значительно уменьшить коксообразование при окислении бензола в фенол, – это проведение реакции в большом избытке окисляемого вещества [U.S. Patent №5756861, С 07 С 37/00, 1998]. В этом случае бензол играет роль не только исходного реагента, но одновременно и компонента, который позволяет в несколько раз увеличить теплоемкость реакционной смеси. Это уменьшает возможность неконтролируемых перегревов, подавляет побочные реакции и увеличивает стабильность катализатора. Однако использование этого подхода в случае фенола является затруднительным, так как большой избыток фенола в реакционной смеси предполагает его многократную рециркуляцию, осуществление которой несравненно труднее, чем рециркуляция бензола. Настоящий патент раскрывает способ получения дигидроксибензолов, в котором окисление фенола закисью азота проводят не в избытке фенола, а в бензоле. Такой способ окисления приводит к значительному повышению стабильности катализатора и увеличению селективности превращения закиси азота в продукты парциального окисления [фенол и дигидроксибензолы]. Согласно изобретению исходная смесь содержит как фенол, так и бензол, поэтому наряду с окислением фенола в ДГБ будет протекать и реакция окисления бензола в фенол: Хотя реакция (2) не дает целевого продукта, она не может рассматриваться как нежелательный побочный процесс, так как образующийся фенол является исходным веществом для реакции (1). Процесс может быть организован либо с целью целевого получения дигидроксибензолов, либо с целью совместного получения дигидроксибензолов и фенола. Путем изменения условий проведения процесса и катализатора можно также варьировать соотношение образующихся дигидроксибензолов с целью целевого получения либо гидрохинона, либо пирокатехина. Возврат непрореагировавших бензола и фенола и выделение целевых продуктов (гидрохинона и пирокатехина) осуществляются известными методами [G.Centi, F.Cavani, F.Trifiro. “Selective oxidation by heterogeneous catalysis”. Kluwer Academic/Plenum Publishers, c.115-120, 2001; Г.Д. Харлампович, Ю.В. Чуркин. “Фенолы”, М., 1974, с.89-105]. В соответствии с данным изобретением процесс проводят в проточном реакторе при температуре 250-600°С и времени контакта 0.1-10 с. Состав исходной реакционной смеси можно варьировать в широких пределах: концентрация фенола – 0.1-99 мол.%, концентрация бензола – 1-99 мол.% и концентрация закиси азота – 1-70 мол.%. Кроме того, реакционная смесь может содержать газ-разбавитель, такой как гелий, аргон, азот, СО2. В качестве катализатора можно использовать цеолиты, а также цеолиты со связующим, в качестве которого применяют Аl2О3, SiO2 или их смесь. Предпочтительно, чтобы катализатор представлял собой цеолит со структурой ZSM-5 и ZSM-11, содержащий в своем составе железо, которое либо изначально присутствует в цеолите в виде примеси, либо специально вводится на стадии синтеза или в ходе последующих обработок цеолита [G.I. Panov, A.S. Kharitonov, V.I. Sobolev. “Oxidative hydroxylation using dinitrogen monoxide: a possible route for organic synthesis over zeolites”. Appl. Catal. A: General, 1993, v.98, p.1-20]. Катализатор может быть активирован путем обработки цеолита водяным паром при температурах 500-1000°С согласно [US Patent №5672777, С 07 С 37/60, 1997]. Сущность предлагаемого изобретения иллюстрируется следующими примерами. Примеры 1-4 Результаты этих примеров приведены в табл.1 и показывают зависимость селективности превращения закиси азота в продукты парциального окисления и стабильности катализатора от введения бензола в исходную смесь, а также зависимость производительности катализатора по ДГБ и фенолу от концентрации фенола в исходной смеси. Пример 1 Порошок цеолита H-ZSM-5, содержащего 0.02 мас.% примесного железа и имеющего модуль по алюминию SiO2/Al2O3=80, предварительно подвергают гидротермальной обработке (50% Н2О) при 700°С в течение 2 часов. Фракцию цеолита 0.5-1.0 мм в объеме 2 см3 (~1.1 г) помещают в кварцевый реактор с внутренним диаметром 7 мм. Перед испытанием катализатор обрабатывают 2 часа в токе воздуха при 550°С. После этого температуру реактора опускают до 450°С, воздух заменяют на смесь, в состав которой входят 2.5 мол.% фенола, 50 мол.% бензола, 5 мол.% закиси азота, остальное гелий. Общая скорость потока реакционной смеси составляет 120 см3/мин, что соответствует времени контакта 1 с. Каждые 19 минут методом газовой хроматографии анализируют состав продуктов реакции. Общая продолжительность эксперимента составляет 12 часов. Для простоты описания результатов экспериментов в состав дигидроксибензолов, помимо пирокатехина, резорцина и гидрохинона, включают также продукт окисления гидрохинона – бензохинон. В таблице 1 представлены основные характеристики реакции, усредненные за 12 часов. Активность катализатора характеризуется производительностью по ДГБ и фенолу. Стабильность – отношением производительности по ДГБ после 12 часов проведения реакции к производительности после 2 часов. Пример 2 (сравнительный) аналогичен примеру 1 с тем отличием, что реакцию ведут без добавления бензола в реакционную смесь. Пример 3 аналогичен примеру 1 с тем отличием, что концентрация фенола в исходной смеси составляет 1.3 мол.%. Пример 4 аналогичен примеру 1 с тем отличием, что концентрация фенола в исходной смеси составляет 6.7 мол.%. Примеры 5-16 Результаты этих примеров приведены в табл.2 и показывают зависимость основных характеристик реакции от температуры проведения реакции и времени контакта. Пример 5 аналогичен примеру 1 с тем отличием, что исходная смесь состоит из 5 мол.% фенола, 20 мол.% бензола, 2.5 мол.% закиси азота, остальное гелий. Конденсат, полученный после охлаждения реакционной смеси, выходящей из реактора с цеолитным катализатором, подвергали простой дистилляции, в результате чего получали дистиллят, обогащенный бензолом, и кубовый остаток, состоящий из смеси фенола и ДГБ. Состав кубового остатка приведен в таблице 3. Пример 6 аналогичен примеру 5 с тем отличием, что температура проведения реакции составляет 325°С. Пример 7 аналогичен примеру 5 с тем отличием, что температура проведения реакции составляет 400°С. Пример 8 аналогичен примеру 5 с тем отличием, что температура проведения реакции составляет 425°С. Пример 9 аналогичен примеру 5 с тем отличием, что температура проведения реакции составляет 475°С. Пример 10 аналогичен примеру 5 с тем отличием, что температура проведения реакции составляет 500°С. Пример 11 аналогичен примеру 5 с тем отличием, что время контакта составляет 0,2 c. Пример 12 аналогичен примеру 5 с тем отличием, что время контакта составляет 0,5 с. Конденсат, полученный после охлаждения реакционной смеси, выходящей из реактора с цеолитным катализатором, подвергали простой дистилляции, в результате чего получали дистиллят, обогащенный бензолом и кубовый остаток, состав которого приведен в таблице 3. Пример 13 аналогичен примеру 5 с тем отличием, что время контакта составляет 2 c. Конденсат, полученный после охлаждения реакционной смеси, выходящей из реактора с цеолитным катализатором, подвергали простой дистилляции, в результате чего получали дистиллят, обогащенный бензолом, и кубовый остаток, состоящий из смеси фенола и ДГБ. Состав кубового остатка приведен в таблице 3. Пример 14 аналогичен примеру 5 с тем отличием, что время контакта составляет 4 с. Пример 15 аналогичен примеру 5 с тем отличием, что в качестве катализатора используют не порошок цеолита, а формованный катализатор, состоящий из 70 мас.% цеолита ZSM-5 и 30 мас.% Аl2О3. Конденсат, полученный после охлаждения реакционной смеси, выходящей из реактора с цеолитным катализатором, подвергали простой дистилляции, в результате чего получали дистиллят, обогащенный бензолом, и кубовый остаток, состоящий из смеси фенола и ДГБ. Состав кубового остатка приведен в таблице 3. Предлагаемый способ приводит к значительному повышению стабильности катализатора и увеличению селективности превращения закиси азота в продукты парциального окисления и может найти применение для поучения дигидроксибензолов, важных полупродуктов органического синтеза. Формула изобретения 1. Способ получения дигидроксибензолов путем каталитического окисления фенола закисью азота в присутствии бензола при температуре 250-600С и времени контакта 0,1-10 с. 2. Способ по п.1, отличающийся тем, что в качестве сопутствующего продукта образуется фенол. 3. Способ по любому из пп.1 и 2, отличающийся тем, что в качестве катализатора используют цеолиты ZSM-5, ZSM-11. 4. Способ по п.3, отличающийся тем, что цеолит используют со связующим. 5. Способ по п.4, отличающийся тем, что в качестве связующего используют оксид алюминия, оксид кремния или их смесь. 6. Способ по любому из пп.1-5, отличающийся тем, что катализатор предварительно активируют путем обработки водяным паром при температурах 500-1000С. 7. Способ по любому из пп.1-6, отличающийся тем, что в исходную смесь вводят инертный газ-разбавитель. |
||||||||||||||||||||||||||