Патент на изобретение №2225039
|
||||||||||||||||||||||||||
(54) СПОСОБ ОБУЧЕНИЯ ПИЛОТА ПОСАДКЕ САМОЛЕТА В СЛОЖНЫХ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЯХ
(57) Реферат: Изобретение относится к области обучения летного состава управлению самолетами. Обучение производят с инструктором с использованием технического средства обучения. Априорно задают рубеж визуальной оценки ожидаемого образа полета, обязывают пилота выполнять первый этап снижения по приборам, простирающегося до заданного рубежа, второй этап снижения под облака на заданном рубеже с принятием решения о продолжении захода на посадку либо об уходе на второй круг и третий этап визуального подхода к взлетно-посадочной полосе после заданного рубежа с маневром доворота самолета на заданное направление посадки. Предлагается, что на третьем этапе захода на посадку дополнительно осуществляют инструментальную коррекцию полученного образа полета относительно области допустимых отклонений путем периодической индикации границ области перед пилотом на экране имитатора визуальной обстановки по заданной программе интервалов времени, составленной с возможностью интерпретации процесса обучения при учете уровня подготовки пилота. Указанной коррекцией полученного образа полета побуждают пилота к дополнительной коррекции своих управляющих действий на третьем этапе захода на посадку. Изобретение направлено на повышение качества обучения пилотов. 2 з.п. ф-лы, 10 ил. Изобретение относится к области обучения летного состава управлению самолетами. Известен способ обучения пилота посадке самолета с компьютерным тренажером, заключающийся в оценке инструктором качества выполнения пилотом режимов полета на основе данных спутниковой навигационной системы, инерциальной навигационной системы, вычислителя действительных координат, вычислителя посадки и коррекции действий пилота (RU 22254 U1, G 09 В 9/08, 10.03.2002). Недостаток известного способа определяется низким качеством обучения, обусловленным незначительным составом корректирующих операций. Наиболее близким к предложенному является способ обучения пилота с использованием авиационного тренажера уровня компьютерного класса, предусматривающий, в частности, определение и постановку инструктором задачи, осуществление контроля полета на всех этапах посадки, выявление допущенных пилотом ошибок и устранение ошибок с демонстрацией пилоту корректирующих операций (Меерович Г.Ш. и др. Авиационные тренажеры и безопасность полетов. – М.: Воздушный транспорт, 1991, с. 320). Однако используемые в указанном способе корректирующие операции также не обеспечивают полноценное и наглядное устранение ошибок пилота. Задачей изобретения является повышение качества обучения пилотов за счет проведения дополнительных инструментальных коррекций на каждом из этапов захода на посадку. Так как ширина ВПП существенно ограничена относительно размера ее возможной длины, то критерии безопасности при выполнении заходов на посадку в сложных метеорологических условиях (СМУ) рассматривают применительно к горизонтальной плоскости. Поставленная задача решается тем, что в способе обучения пилота посадке самолета в СМУ, согласно которому обучение производят с использованием технического средства обучения, задают рубеж визуальной оценки ожидаемого образа полета относительно места посадки, и обязывают пилота выполнить первый этап снижения до указанного рубежа с управлением по приборам, произвести второй этап снижения до принятия решения о возможности доворота для посадки либо ухода на второй круг и осуществить третий этап снижения с указанным доворотом, при всем при этом выявляют ошибки управления по отклонениям траектории полета и командами корректируют действия пилота, при этом на третьем этапе захода на посадку дополнительно осуществляют инструментальную коррекцию полученного образа полета относительно области допустимых отклонений путем периодической индикации границ области перед пилотом на экране имитатора визуальной обстановки по заданной программе интервалов времени, составленной с возможностью интерпретации процесса обучения при учете уровня подготовки пилота, и указанной коррекцией полученного образа полета побуждают пилота к дополнительной коррекции своих управляющих действий на третьем этапе захода на посадку. Решению поставленной задачи способствуют частные существенные признаки изобретения. На первом этапе захода на посадку дополнительно осуществляют инструментальную коррекцию процесса сборки пилотом приборной информации путем индикации ему на приборной доске световых контрастных сигналов, обрамляющих каждый из необходимых приборов, по заданной программе очередности и интервалов времени, составленной с возможностью интерпретации процесса обучения при учете индивидуальных особенностей пилота, и указанной коррекцией сбора приборной информации побуждают пилота к дополнительной коррекции своих управляющих действий на первом этапе захода на посадку. На втором этапе захода на посадку дополнительно осуществляют инструментальную коррекцию ожидаемого образа полета относительно места посадки путем смещения самолета в другую точку пространства на заданную величину, выбранную в зависимости от уровня подготовки пилота, с отображением смещения на экране имитатора визуальной обстановки и при сохранении показаний приборов, и указанной коррекцией ожидаемого образа полета побуждают пилота к дополнительной коррекции своих управляющих действий на втором этапе захода на посадку. Блок-схема устройства, реализующего противопоставленный способ для летательного аппарата (ЛА), приведена на фиг.1. Известное устройство состоит из покупного оборудования и включает в себя три персональные ЭВМ с процессорами типа “Pentium-4”, видеоадаптеры на чип сетах типа GeForse-3, имитаторы органов управления самолетом и силовой установкой. Устройство содержит программный модуль управляющей системы вычислительного комплекса 1 (блок 1), программный модуль пульта 2 инструктора (блок 2), программный модуль органов 3 управления ЛА (блок 3), программный модуль экрана 4 инструктора (блок 4), программный модуль ИВО 5 (блок 5), программный модуль имитаторов 6 приборов летчика (блок 6). На фиг.2 приведено изображение, которое формируют на экране блока 4 известного устройства. На изображении отмечены взлетно-посадочная полоса (ВПП), заданное направление посадки (ЗHП) и траектория полета в горизонтальной плоскости (ТП). На экране блока 4 формируют отклонения самолета от ЗНП (а далее по тексту просто “отклонения”). Инструктор имеет возможность на первом этапе захода осуществлять контроль полета на снижении и выполнять непосредственную коррекцию управляющих действий путем подсказки пилоту голосом величины и направления фактических боковых отклонений от ЗНП в метрах, а также величины необходимого крена в градусах для доворотов по курсу на ЗНП. Устройство, с помощью которого осуществляется предложенный способ, также состоит из покупного оборудования и на примере градации тренажеров соответствует уровню “компьютерного класса”. В устройство входят три персональные ЭВМ с процессорами типа “Pentium-4”; видеоадаптеры на чип сетах типа GeForse-3, имитаторы органов управления самолетом и силовой установкой. На фиг. 3 приведена блок-схема в части формирования границы области допустимых отклонений полета самолета относительно ЗНП (границы разрешенных отклонений) – ГОДО (ГРО). На фиг.4 приведено изображение ГОДО (ГРО). На фиг. 5 приведена блок-схема в части формирования смещения самолета (смещения траектории захода) – СС (СТЗ). На фиг.6 приведено изображение СТЗ (СС). На фиг.7 приведена блок-схема в части формирования оптимальной схемы распределения внимания – СРВ. На фиг.8 приведено условное изображение СРВ. На фиг.9 приведена итоговая блок-схема формирования ГОДО, СС и СРВ. На фиг.10 приведено итоговое изображение ГОДО, СС и СРВ. Предложенное устройство, приведенное на фиг.9, содержит программный модуль управляющей системы вычислительного комплекса 1 (блок 1), программный модуль пульта 2 инструктора (блок 2), программный модуль органов 3 управления ЛА (блок 3), программный модуль экрана 4 инструктора (блок 4), программный модуль имитатора 5 визуальной обстановки (блок 5), программный модуль имитаторов 6 приборов летчика (блок 6), программный модуль формирования ГОДО вычислительного комплекса 1 (блок 7), программный модуль формирования СС вычислительного комплекса 1 (блок 8), программный модуль формирования СРВ вычислительного комплекса 1 (блок 9). Первые информационные выходы блока 2 связаны с блоком 1 через первую группу его входов, первые информационные выходы блока 3 связаны с блоком 1 через пятую группу его входов, первые информационные выходы блока 4 связаны с блоком 1 через вторую группу его входов, четвертые информационные выходы блока 1 связаны с блоком 4 через первую группу его входов, первые информационные выходы блока 5 связаны с блоком 1 через третью группу его входов, пятые информационные выходы блока 1 связаны с блоком 5 через первую группу его входов, первые информационные выходы блока 6 связаны с блоком 1 через четвертую группу его входов, шестые информационные выходы блока 1 связаны с блоком 6 через первую группу его входов, первые информационные выходы блока 7 связаны с блоком 4 через вторую группу его входов, а вторые информационные выходы связаны с блоком 5 через третью группу его входов, третьи информационные выходы блока 1 связаны с блоком 7 через первую группу его входов, первые информационные выходы блока 8 связаны с блоком 5 через вторую группу его входов, а вторые информационные выходы блока 8 связаны с блоком 4 через третью группу его входов, вторые информационные выходы блока 1 связаны с блоком 8 через первую группу его входов, первые информационные выходы блока 9 связаны с блоком 6 через вторую группу его входов, а вторые информационные выходы блока 9 связаны с программным модулем 4. Для реализации блок-схемы с многофункциональными блоками 1-9 задействованы персональные компьютеры (ПК) типа Pentium III. Все ПК объединены программой обмена по Ethernet в реальном масштабе времени с общим полем памяти и возможностью управления любым ПК через включение прерывания на любой ПК от другого (создается единая сеть обмена данными). Все параметры и команды вводятся с клавиатуры ПК и обрабатываются в двоичном коде по алгоритмам в соответствии с названием блоков схемы. Информация инструктору и летчику предъявляется на экранах мониторов. Летчик воздействует на органы управления блока 3 (ручка управления, педали, ручка управления двигателя), с которых сигналы в виде двоичного кода, соответствующие изменению параметров руля высоты ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Например, для среднего класса ЛА типа Ан-72: Vп=210 км/час – скорость подхода к ВПП; ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() 1 – вариометр (0,9 сек), 2 – указатель курса (0,9 сек), 3 – указатель скорости (0,6 сек), 4 – авиагоризонт (0,5 сек), 5 – высотомер (0,6 cек). Другими словами, инструктор производит косвенную коррекцию управляющих действий, для чего он выполняют инструментальную коррекцию процесса сбора приборной информации, причем инструментальную коррекцию инструктор производит путем индикации на приборной доске дополнительных сигналов вокруг приборов по заданной программе, составленной с возможностью интерпретации процесса обучения при учете индивидуальных особенностей пилота. На втором этапе захода на посадку при подходе самолета к рубежу метеоминимума (высота 150 м, дальность 1500 м) инструктор на дальности 1300 м производит коррекцию ожидаемого образа полета относительно наземных ориентиров, причем коррекцию производит путем смещения самолета в другую точку пространства на заданную величину, выбранную в зависимости от уровня подготовки пилота, с отображением смещения на экране ИВО 5 и при сохранении показаний приборов (фиг.6). Например, при первом заходе смещение будет влево на 50 м за границу ОДО (450 м от ЗНП влево); при втором заходе смещение будет вправо на 50 м за границу ОДО (450 м от ЗНП вправо); при третьем заходе смещение будет влево, не доходя 50 м до границы ОДО (350 м от ЗНП влево); при четвертом заходе смещение будет вправо, не доходя 50 м до границы ОДО (350 м от ЗНП вправо) и т.д. Размеры отклонений от захода к заходу зависят от методических замыслов инструктора и уровня подготовки конкретного пилота. Если пилот в течение 3…5 секунд принимает правильное решение (нахожусь внутри ГОДО и продолжаю заход либо – нахожусь за пределами ГОДО и ухожу на второй круг), то инструктор подтверждает его голосом. Если пилот принимает неправильное решение, то инструктор голосом отменяет его и пилот санкционировано уходит на второй круг. Другими словами, инструктор производит косвенную коррекцию управляющих действий, которые после коррекции уже сориентированы либо на управление по преодолению неожиданной полетной ситуации, либо на управление по выполнению ухода на второй круг. На третьем этапе захода на посадку в случае принятия пилотом правильного решения с продолжением захода, но невозможности справиться с задачей подхода к ВПП из-за непривычно сложных для него – для конкретного пилота – условий полета инструктор производит коррекцию образа полета относительно области допустимых отклонений, причем коррекцию он производит путем периодической кратковременной индикации границ указанной области перед пилотом на экране ИВО 5 (фиг.4) путем нажатия и удерживания соответствующей клавиши компьютера такое время, какое инструктор считает необходимым. Когда инструктор осуществляет индикацию по другой заданной для себя программе интервалов времени, то другую программу он выбирает в зависимости от уровня подготовки пилота. Например, одному пилоту инструктор индицирует границы ОДО в начале подхода, в середине и в конце подхода, для другого пилота – только в начале или в конце подхода, для третьего пилота удерживает индикацию ОДО непрерывно на протяжении всего подхода, в то время как для четвертого пилота индикация границ ОДО может потребоваться эпизодически по запросу самого пилота. Другими словами, инструктор производит опять же косвенную коррекцию управляющих действий, для чего выполняет инструментальную коррекцию образа полета относительно области допустимых отклонений. Затем заходы на посадку повторяются с выполнением коррекции на всех этапах, но уже с учетом результатов предыдущих заходов. Особенности предложенного способа заключаются в том, что в зависимости от пожеланий пилота инструктор может включать все три вида коррекцией по запросу (или по программе) пилота. Помимо этого коррекция с использованием индикации границ ГОДО может быть применена и на первом этапе захода при выполнении снижения по приборам до точки принятия решения. Инструктор, исходя из своих методических замыслов, может подтверждать правильные решения пилота, а может и умолчать о выборе неправильного решения либо о выходе самолета за границы ОДО, чтобы пилот при дальнейшем управлении сам убедился на опыте в своей ошибке и увидел, к чему она приводит. В этом случае инструктор фактически реализует принцип “полезной ошибки”. Казалось бы, что вместо задуманного инструктором “смещения” можно было бы использовать в компьютере стандартную программу генератора случайных чисел, которая бы работала на заданных рубежах дальности. Однако при этом утрачивается основное потребительское достоинство способа: во-первых, придется дожидаться желаемых условий полета, а во-вторых, у инструктора исчезает возможность реализовывать свои методические замыслы от полета к полету, с учетом уровня подготовки пилота, что в принципе не приемлемо для процесса обучения. На всех этапах захода выполнение какой бы то ни было коррекции со стороны инструктора в конечном итоге побуждает пилота производить коррекцию своих управляющих действий. Коррекция процесса сбора приборной информации до пролета заданного рубежа обеспечивает пилоту оптимизацию этого процесса и закрепление наиболее важных навыков управления самолетом в “слепом” полете. Коррекция путем индикации на приборной доске дополнительных сигналов вокруг приборов является наиболее эффективным способом, обеспечивающим вышеуказанную оптимизацию. Выполнение поочередной индикации специальных сигналов вокруг приборов по заданной программе интервалов времени обеспечивает возможность интерпретации процесса обучения с учетом индивидуальных особенностей конкретного пилота. Выбор программы индикации специальных сигналов в зависимости от уровня подготовки пилота обеспечивает реализацию основного принципа в авиации “от простого – к сложному” с возможностью соответствующей автоматизации процесса обучения. Коррекция ожидаемого образа полета относительно наземных ориентиров на заданном рубеже перехода на визуальный полет создает для пилота критические условия для приобретения им навыков принятия правильных решений (в том числе и по дальнейшему управлению), а следовательно, навыков, наиболее ценных с точки зрения повышения уровня безопасности полетов. Коррекция за счет смещения самолета в другую точку пространства с сохранением показаний приборов обеспечивает абсолютный эффект неожиданности, без которого заявляемый способ не будет иметь никакой практической значимости. Выполнение смещения на заданную величину обеспечивает возможность учета психофизиологического состояния пилота в данный момент времени. Выбор величины смещения в зависимости от уровня подготовки пилота обеспечивает реализацию основного принципа в авиации “от простого – к сложному” с возможностью соответствующей автоматизации процесса обучения. Коррекция образа полета относительно области допустимых отклонений обеспечивает пилоту закрепление навыков управления независимо от схемы размещения конкретных наземных ориентиров на конкретном аэродроме посадки, что особенно важно при выполнении посадок на “чужой” аэродром. Коррекция путем индикации границ области допустимых отклонений перед пилотом обеспечивает наиболее эффективный способ, с точки зрения закрепления пилотом вышеуказанных навыков с целевым назначением. Таким образом, в предложенном способе имеют место ранее не применявшиеся в авиационной практике виды выполнения инструментальной коррекции актуальных процессов летной деятельности, что непосредственно направленно на повышение качества обучения летного состава с решением проблемы снижения процента авиакатастроф по критериям человеческого фактора. Такие виды коррекции по сущности своей обеспечивают интеллектуальную и психологическую поддержку летного состава с решением проблемы их “внутренних затруднений”, чего именно и не достает сегодня пилотам для уверенного управления самолетом от полета к полету. Формула изобретения 1. Способ обучения пилота посадке самолета в сложных метеорологических условиях с использованием технического средства обучения, при котором задают рубеж визуальной оценки ожидаемого образа полета относительно места посадки и обязывают пилота выполнить первый этап снижения до указанного рубежа с управлением по приборам, произвести второй этап снижения до принятия решения о возможности доворота для посадки либо ухода на второй круг и осуществить третий этап снижения с указанным доворотом, при всем при этом выявляют ошибки управления по отклонениям траектории полета и командами корректируют действия пилота, отличающийся тем, что на третьем этапе захода на посадку дополнительно осуществляют инструментальную коррекцию полученного образа полета относительно области допустимых отклонений путем периодической индикации границ области перед пилотом на экране имитатора визуальной обстановки по заданной программе интервалов времени, составленной с возможностью интерпретации процесса обучения при учете уровня подготовки пилота, и указанной коррекцией полученного образа полета побуждают пилота к дополнительной коррекции своих управляющих действий на третьем этапе захода на посадку. 2. Способ по п.1, отличающийся тем, что на первом этапе захода на посадку дополнительно осуществляют инструментальную коррекцию процесса сбора пилотом приборной информации путем индикации ему на приборной доске световых контрастных сигналов, обрамляющих каждый из необходимых приборов, по заданной программе очередности и интервалов времени, составленной с возможностью интерпретации процесса обучения при учете индивидуальных особенностей пилота, и указанной коррекцией сбора приборной информации побуждают пилота к дополнительной коррекции своих управляющих действий на первом этапе захода на посадку. 3. Способ по п.1 или 2, отличающийся тем, что на втором этапе захода на посадку дополнительно осуществляют инструментальную коррекцию ожидаемого образа полета относительно места посадки путем смещения самолета в другую точку пространства на заданную величину, выбранную в зависимости от уровня подготовки пилота, с отображением смещения на экране имитатора визуальной обстановки и при сохранении показаний приборов и указанной коррекцией ожидаемого образа полета побуждают пилота к дополнительной коррекции своих управляющих действий на втором этапе захода на посадку. РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 10.12.2004
Извещение опубликовано: 20.05.2006 БИ: 14/2006
|
||||||||||||||||||||||||||