Патент на изобретение №2222829
|
||||||||||||||||||||||||||
(54) ИСПОЛЬЗОВАНИЕ НЕОРГАНИЧЕСКИХ ЧАСТИЦ И СПОСОБ МАРКИРОВКИ И ИДЕНТИФИКАЦИИ СУБСТРАТА ИЛИ ИЗДЕЛИЯ
(57) Реферат: Изобретение относится к маркировке объектов. Его использование при кодировании изделий и документов позволяет обеспечить технический результат в виде расширения возможностей и повышения помехоустойчивости кодирования, особенно пригодного для документов. Этот технический результат достигается благодаря применению маркировочного средства в среде носителя, которое представляет собой как минимум одну неорганическую частицу, включающую не менее двух химических элементов по меньшей мере в одном заранее установленном соотношении элементов, причем это соотношение является кодом или частью кода, в котором частицу выбирают из группы нестехиометрических кристаллов, причем частица остается в среде носителя для определения на месте установленного соотношения элементов. После получения этого маркировочного средства его неорганические частицы вводят в носитель, представляющий собой покровную композицию, предпочтительно печатную краску, и наносят эту покровную композицию на изделие в качестве маркировки. При идентификации локализуют положение этих частиц с помощью аналитического метода, предпочтительно сканирующей электронной микроскопии, и определяют соотношения химических элементов, входящих в состав частиц, причем это определение предпочтительно осуществляют методом рассеяния рентгеновского излучения по энергии или длине волны на сканирующем электронном микроскопе. 7 с. и 17 з.п. ф-лы, 8 ил. Область техники, к которой относится изобретение Настоящее изобретение относится к использованию неорганических частиц, которые содержат по меньшей мере два химических элемента в предварительно заданном и аналитически идентифицируемом соотношении, к способу маркировки субстрата и к способу маркировки и идентификации субстрата и/или изделия. Настоящее изобретение может быть использовано при кодировании изделий и документов. Уровень техники Кодированные микрочастицы, код которых представлен по меньшей мере тремя визуально различаемыми цветными слоями органических смол, и их использование в качестве метки и/или элемента охраны, для того чтобы предотвратить подделку изделий, уже были описаны в патенте Германии DE 2651528 и патенте США 4329393. Первоначально эти частицы были разработаны для обеспечения прослеживания взрывчатых веществ от их производства до взрыва. Эти метки продавали под торговой маркой Microtaggant или Microtrace. Поскольку единственной характеристикой кодирования является цветовая последовательность слоев, применение этих меток ограничивается размером частиц и выбором материала. Частицы размером менее 30 мкм являются необходимым требованием для многих областей применения, в частности, в чернилах для печати и родственных продуктах. Трудно получить высокое разрешение линий и цифр с чернилами для печати, которые содержат частицы, более крупные, чем сам напечатанный элемент. Частицы, произведенные из органического ламината, едва ли можно измельчить до размеров в желаемом интервале. Дополнительным недостатком этих органических частиц является отсутствие термической стабильности. Это приводит к разрушению маркировки или элемента охраны, когда изделие подвергается воздействию огня или тепла. В патенте США 5670239 описана композиция для делокализованной маркировки изделий, которая затрудняет подделку или несоответствующую эксплуатацию этих изделий. Эта композиция содержит нетрадиционные химические элементы, то есть более или менее редкие элементы из основных групп и подгрупп Периодической системы элементов. В частности, это элементы, которые имеют линию K ![]() 1. Вторичные электроны, т.е. электроны материала образца, которые испускаются после столкновения с электронами первичного луча. Вторичные электроны имеют низкую энергию (меньше, чем 50 кэВ) и поэтому могут испускаться только с поверхностного слоя образца. В результате детектирование вторичных электронов дает топографический облик поверхности образца (“топографический контраст”). 2. Электроны обратного рассеяния, т.е. электроны первичного луча, которые рассеиваются на ядрах или на центре атомов образца. Электроны обратного рассеяния имеют высокую энергию, близкую к энергии первичного луча, и могут испускаться из всего объема образца, в который проникает луч. Поскольку степень рассеивания электронов на атоме возрастает с увеличением его атомного номера, электроны обратного рассеяния дают облик химической природы образца (“химический контраст”). 3. Рентгеновское излучение, возникающее при повторном заполнении вакантных электронных оболочек в атомах образца после столкновений с электронами первичного луча. Каждый атом испускает характерный для него спектр рентгеновского излучения, состоящий из линий К-, L-, М-серий и т.д., который может быть использован для заключения о наличии определенного химического элемента в образце, а также для определения его относительного количества, если имеется стандарт сравнения. Интенсивность полученного рентгеновского излучения заметно зависит от энергии возбуждающих электронов первичного луча, а также от наличия на пути луча материала, поглощающего рентгеновское излучение. Как общее правило, энергия сканирующего электронного луча должна быть по меньшей мере приблизительно в два раза больше энергии эмиссии наблюдаемой линии, причем линии эмиссии с значением энергии меньше, чем 2 кэВ уже будут искажены потерями поглощения в матрице органических чернил. При работе сканирующего электронного микроскопа обычно энергия первичного луча составляет 20 кэВ. В этих условиях элементы вплоть до брома (атомный номер 35) можно предпочтительно определять на их К-линиях, тогда как элементы от рубидия до висмута (атомные номера от 37 до 83) предпочтительно должны определяться на их L-линиях. Для более тяжелых элементов последней группы М-линии также представляют некоторый интерес, причем их предпочтительно используют для определения актинидов. Для расчета отдельно интегрируют площади пиков в сериях К-, L- и М-линий и их учитывают в соответствии со способами расчета, которые специфичны для данного прибора. Следующие ниже чертежи и примеры могут дополнительно разъяснить настоящее изобретение, которое, однако, не ограничивается этими данными. Краткое описание чертежей На фиг.1 показано изображение в сканирующем электронном микроскопе кристаллической, нестехиометрической, неорганической частицы настоящего изобретения, содержащей информацию, которая введена в чернила для глубокой печати, при детектировании электронов обратного рассеяния (химический контраст). На фиг.2 показано изображение в сканирующем электронном микроскопе нескольких кристаллических, нестехиометрических, неорганических частиц настоящего изобретения, содержащих информацию, в чернилах для печати путем шелкографии с переменными оптическими свойствами. На фиг. 3 показано изображение в сканирующем электронном микроскопе тех же самых частиц, что и на фиг.2, в чернилах для глубокой печати с переменными оптическими свойствами. На фиг.4 показано изображение в сканирующем электронном микроскопе большой массы кристаллических, нестехиометрических, неорганических частиц, содержащих информацию, которое визуализировано путем детектирования электронов обратного рассеяния. На фиг. 5 представлен спектр рассеяния энергии рентгеновского излучения на одной из кристаллических, нестехиометрических, неорганических частиц, локализованных на фиг.2. На фиг. 6 приведены табличные данные СЭМ/РРЭ, полученные при анализе неорганических частиц согласно изобретению. На фиг.7 показано изображение в сканирующем электронном микроскопе неорганических частиц типа стекла, содержащих информацию, в соответствии с настоящим изобретением. На фиг. 8 представлен спектр рассеяния энергии рентгеновского излучения на одной из частиц фиг. 7. Химический состав частицы представляет собой (GeO2-SiO2-La2O3-Еr2O3-Та2O5). На фиг. 1-4 показана локализация частиц в СЭМ с использованием детектирования электронов обратного рассеяния. В этом случае неорганические частицы имеют состав (Y(2-u -v-w-x)NduGdvErwYbx)O2S. На фиг. 6 приведены табличные данные СЭМ/РРЭ, полученные при анализе неорганических частиц согласно изобретению. В первом столбце приведены результаты СЭМ/РРЭ, которые получены для чистой частицы фиг.4 с использованием внутренней стандартизации прибора и алгоритмов относительно соотношения элементов в стандартной частице, которые будут доступны только владельцу указанного стандарта. В столбцах 2, 3 и 4 приведены СЭМ/РРЭ результаты для каждого индивидуального кристалла метки, которые присутствуют в концентрации 1 и 0,1% соответственно в двух различных чернилах для глубокой печати. Эти анализы были проведены при обычной печати этими чернилами. Повышенная емкость кодирования этого типа маркировки согласно настоящему изобретению, а также ее нечувствительность к возмущающим элементам и к попыткам воссоздания кода будут проиллюстрированы с помощью следующего примера: Пример Кодирующие частицы Р1: (Y1,6Nd0.2Gd0,2)O2S Кодирующие частицы Р2: (Y1,0Gd0,2Yb0,4)O2S Кодирующие частицы Р3: (Y1,3Nd0,1Gd0,4Yb0,2)O2S Камуфлирующий материал С1:Lа2О3 Камуфлирующий материал С2:Gd2О3 Кодирование, осуществляемое смесью 1:1 частиц Р1 и Р2, можно отличить согласно настоящему изобретению от кодирования, осуществляемого частицами Р3. В способе по патенту США 5670239 эти два случая нельзя различить. Это иллюстрирует повышенную емкость кодирования для средства маркировки согласно настоящему изобретению. Кодирование, осуществляемое смесью 1:1 частиц Р1 и камуфлирующего материала С1, легко декодируется, согласно настоящему изобретению по имеющемуся соотношению элементов (Y1,6Nd0,2Gd0,2); разумеется, достаточно локализовать один кристалл частицы (Y1,6Nd0,2Gd0,2)O2S и проанализировать его. Поскольку в способе по патенту США 5670239 будет дополнительно рассматриваться оксид лантана, он будет включен в общее соотношение элементов, в этом случае – (La1,0Y0,8Nd0,1Gd0,1). Таким же будет соотношение по составу, полученное при классическом элементарном анализе, рентгеновской флуоресценции, лазерно-абляционной масс-спектрометрии с индуцируемой плазмой и др., что иллюстрирует повышенную стойкость против воссоздания маркирующего средства согласно настоящему изобретению. Приведенное выше также справедливо для кодирования, осуществляемого смесью частиц Р1 и камуфлирующего материала С2. Надлежащее считывание кода еще возможно методом СЭМ/РРЭ, в то время как другие аналитические методы приведут к совершенно ошибочному содержанию гадолиния. Это иллюстрирует устойчивость кодирования согласно настоящему изобретению к возмущающим элементам, которые могут присутствовать по другим причинам, в кодируемом изделии или на его поверхности. С другой стороны, камуфлирующий материал может быть добавлен специально, для того чтобы ввести в заблуждение любого потенциального фальсификатора. Формула изобретения 1. Маркировочное средство, применяемое в среде носителя и представляющее собой как минимум одну неорганическую частицу, включающую не менее двух химических элементов по меньшей мере в одном заранее установленном соотношении элементов, причем это соотношение является кодом или частью кода, в котором частицу выбирают из группы нестехиометрических кристаллов, причем частица остается в среде носителя для in situ-определения установленного соотношения элементов. 2. Маркировочное средство по п.1, в котором неорганическую частицу выбирают из группы, состоящей из нестехиометрических кристаллов со структурой граната, шпинели, перовскита или циркона. 3. Маркировочное средство по п.1, в котором неорганическую частицу выбирают из группы нестехиометрических оксисульфидов редкоземельных элементов и/или иттрия. 4. Маркировочное средство по любому из пп.1-3, в котором объем частицы составляет приблизительно от 0,01 до 10000 мкм3, предпочтительно от 0,1 до 1000 мкм3, более предпочтительно от 1 до 100 мкм3. 5. Маркировочное средство по любому из пп.1-4, в котором частицу локализуют методом сканирующей электронной микроскопии. 6. Маркировочное средство по любому из пп.1-5, в котором неорганическую частицу локализуют в электронном микроскопе методом обратного рассеяния электронов. 7. Маркировочное средство по любому из пп.1-6, в котором соотношение химических элементов определяют методом рассеяния рентгеновского излучения по энергии или длине волны на сканирующем электронном микроскопе. 8. Маркировочное средство по любому из пп.1-7, в котором частица дополнительно обладает одним или несколькими из следующих свойств: люминесценции, магнитных свойств, ИК-поглощения, радиочастотного резонанса. 9. Маркировочное средство по любому из пп.1-8 для маркировки охранных документов. 10. Носитель, представляющий собой покровную композицию или печатную краску, или материал типа бумаги, охранной фольги, пластиковой карточки или волокон, включающий маркировочное средство по любому из пп.1-8, в которых заранее установленное соотношение не менее двух химических элементов в частице служит маркировочной характеристикой, причем частицы содержатся в количестве от 0,0001 до 10%, предпочтительно от 0,001 до 1% и более предпочтительно от 0,01 до 0,1% от общего веса всей покровной композиции, краски или материала, в которые их добавляют. 11. Способ маркировки изделий, включающий стадии: (a) получения по крайней мере одного маркировочного средства с аналитически определяемой характеристикой, включающего как минимум одну неорганическую частицу из нестехиометрических кристаллов, содержащую не менее двух химических элементов в заранее установленном соотношении, служащем маркировочной характеристикой, причем это соотношение химических элементов является кодом или частью кода; (b) введения неорганической частицы, полученной на стадии (а), в носитель, представляющий собой покровную композицию, предпочтительно печатную краску; (с) нанесения покровной композиции, предпочтительно печатной краски, полученной на стадии (b), на изделие в качестве маркировки. 12. Способ маркировки изделий по п.11, включающий стадии: (a) получения по крайней мере одного маркировочного средства с аналитически определяемой характеристикой, включающего как минимум одну неорганическую частицу из нестехиометрических кристаллов, содержащую не менее двух химических элементов в заранее установленном соотношении, служащем маркировочной характеристикой, причем это соотношение химических элементов является кодом или частью кода; (b) введения неорганической частицы, полученной на стадии (а), в носитель, представляющий собой покровную композицию, предпочтительно печатную краску; (c) введения в носитель, полученный на стадии (b), одного или нескольких камуфлирующих соединений, содержащих по меньшей мере один из химических элементов, входящих в состав частицы в заранее установленном соотношении; (d) нанесения покровной композиции, предпочтительно печатной краски, полученной на стадии (с), на изделие в качестве маркировки. 13. Способ по п.11 или 12, в котором частицу локализуют на сканирующем электронном микроскопе методом обратного рассеяния электронов. 14. Способ по любому из пп.11-13, в котором объем отдельной частицы составляет приблизительно от 0,01 до 10000 мкм3, предпочтительно от 0,1 до 1000 мкм3, более предпочтительно от 1 до 100 мкм3. 15. Способ маркировки и идентификации изделий, включающий стадии: (а) получения по крайней мере одного маркировочного средства с аналитически определяемой характеристикой, включающего как минимум одну неорганическую частицу из нестехиометрических кристаллов, содержащую не менее двух химических элементов в заранее установленном соотношении, служащем маркировочной характеристикой, причем это соотношение химических элементов является кодом или частью кода; (b) введения неорганической частицы из стадии (а), в носитель, представляющий собой покровную композицию, предпочтительно печатную краску; (c) нанесения покровной композиции, предпочтительно печатной краски, полученной на стадии (b), на изделие в качестве маркировки; (d) локализации положения частицы, полученной на стадии (а) и находящейся в нанесенной покровной композиции или печатной краске, полученной на стадии (b), с помощью аналитического метода, предпочтительно сканирующей электронной микроскопии; (e) определения соотношения или соотношений химических элементов, входящих в состав частицы, локализованной на стадии (d), причем это определение предпочтительно осуществляют методом рассеяния рентгеновского излучения по энергии или длине волны на сканирующем электронном микроскопе. 16. Способ маркировки и идентификации изделий по п.15, включающий стадии: (a) получения по крайней мере одного маркировочного средства с аналитически определяемой характеристикой, включающего как минимум одну неорганическую частицу из нестехиометрических кристаллов, содержащую не менее двух химических элементов в заранее установленном соотношении, служащем маркировочной характеристикой, причем это соотношение химических элементов является кодом или частью кода; (b) введения неорганической частицы, полученной на стадии (а), в носитель, представляющий собой покровную композицию, предпочтительно печатную краску; (c) введения в носитель, полученный на стадии (b), одного или нескольких камуфлирующих соединений, содержащих по меньшей мере один из химических элементов, входящих в состав частицы на стадии (b) в заранее установленном соотношении; (d) нанесения покровной композиции, предпочтительно печатной краски, полученной на стадии (с), на изделие в качестве маркировки; (e) локализации положения частицы, полученной на стадии (а) и находящейся в нанесенной покровной композиции или печатной краске, полученной на стадии (с), с помощью аналитического метода, предпочтительно сканирующей электронной микроскопии; (f) определения соотношения или соотношений химических элементов, входящих в состав частицы, локализованной на стадии (е), причем это определение предпочтительно осуществляют методом рассеяния рентгеновского излучения по энергии или длине волны на сканирующем электронном микроскопе. 17. Способ по п.15 или 16, в котором частицу локализуют на сканирующем электронном микроскопе методом обратного рассеяния электронов. 18. Способ по любому из пп.15-17, в котором объем отдельной частицы составляет приблизительно от 0,01 до 10000 мкм3, предпочтительно от 0,1 до 1000 мкм3, более предпочтительно от 1 до 100 мкм3. 19. Способ маркировки и идентификации изделий, содержащих материал типа пластика, бумаги, охранной фольги или волокон, включающий стадии: (а) получения по крайней мере одного маркировочного средства с аналитически определяемой характеристикой, включающего как минимум одну неорганическую частицу из нестехиометрических кристаллов, содержащую не менее двух химических элементов в заранее установленном соотношении, служащем маркировочной характеристикой, причем это соотношение химических элементов является кодом или частью кода; (b) введения неорганической частицы, полученной на стадии (а), в качестве маркировки в носитель, представляющий собой по меньшей мере один из материалов, из которых изготовлено изделие; (c) локализации положения частицы, полученной на стадии (а) и находящейся в носителе, полученном на стадии (b), с помощью аналитического метода, предпочтительно сканирующей электронной микроскопии; (d) определения соотношения или соотношений химических элементов в частице, локализованной на стадии (с), причем это определение предпочтительно осуществляют методом рассеяния рентгеновского излучения по энергии или длине волны на сканирующем электронном микроскопе. 20. Способ маркировки и идентификации изделий по п.19, содержащих материал типа пластика, охранной фольги или волокон, включающий стадии: (a) получения по крайней мере одного маркировочного средства с аналитически определяемой характеристикой, включающего как минимум одну неорганическую частицу из нестехиометрических кристаллов, содержащую не менее двух химических элементов в заранее установленном соотношении, служащем маркировочной характеристикой, причем это соотношение химических элементов является кодом или частью кода; (b) введения неорганической частицы, полученной на стадии (а), в качестве маркировки в носитель, представляющий собой по меньшей мере один из материалов, из которых изготовлено изделие; (c) введения в носитель, полученный на стадии (b), одного или нескольких камуфлирующих соединений, содержащих по меньшей мере один из химических элементов, входящих в состав частицы в заранее установленном соотношении; (d) локализации положения частицы, полученной на стадии (а) и находящейся в носителе, полученном на стадии (с), с помощью аналитического метода, предпочтительно сканирующей электронной микроскопии; (е) определения соотношения или соотношений химических элементов в частице, локализованной на стадии (d), причем это определение предпочтительно осуществляют методом рассеяния рентгеновского излучения по энергии или длине волны на сканирующем электронном микроскопе. 21. Способ по п.19 или 20, в котором частицу локализуют на сканирующем электронном микроскопе методом обратного рассеяния электронов. 22. Способ по любому из пп.19-21, в котором объем отдельной частицы составляет приблизительно от 0,01 до 10000 мкм3, предпочтительно от 0,1 до 1000 мкм3, более предпочтительно от 1 до 100 мкм3. 23. Охранный документ, предпочтительно изготовленный из бумаги или пластика, типа банкнот, ценных бумаг, удостоверений личности, пластических карточек или охранной фольги, маркированный согласно способу по любому из пп.11-22. 24. Маркированное изделие, которое включает маркировочное средство по любому из пп.1-8 с аналитически определяемой характеристикой, включающее как минимум одну неорганическую частицу из нестехиометрических кристаллов, содержащую не менее двух химических элементов в заранее установленном соотношении, служащем маркировочной характеристикой, причем это соотношение химических элементов является кодом или частью кода. РИСУНКИ
|
||||||||||||||||||||||||||