Патент на изобретение №2222607
|
||||||||||||||||||||||||||
(54) СПОСОБ ЛЕГИРОВАНИЯ СТАЛИ
(57) Реферат: Изобретение относится к области черной металлургии, а именно к технологии производства микролегированных сталей. Способ легирования стали включает выплавку металла в сталеплавильном агрегате, подачу во время выпуска металла в ковш материала, содержащего оксиды марганца, материала, содержащего микролегирующие элементы, и восстановителя в объем струи выпускаемого металла с совмещением начала их подачи с началом выпуска металла в ковш и окончанием их подачи с выпуском 93-95% массы выпускаемого металла. Подачу материалов в объем струи выпускаемого металла ведут с ориентацией сверху вниз под углом 30-60o к оси струи выпускаемого металла. В качестве восстановителя используют сплав алюминия и карбида кальция, взятых в соотношении 4:1. Технический результат – снижение загрязненности стали неметаллическими включениями и повышение ее качества. 2 з.п. ф-лы, 1 табл. Изобретение относится к области черной металлургии, а именно к технологии производства микролегированных сталей. Известен способ легирования стали титаном при разливке, включающий введение измельченного титансодержащего материала под струю стали при разливке ее в металлоприемник, в качестве которого используют металлоконцентрат обогащения шлака от производства ферротитана в количестве 0,9-1,4 кг/т стали, при содержании титана в металлоконцентрате 15-40% (А.с. СССР 1154340, кл. С 21 С 7/00, опубл. 07.05.1985 г.). Повышенное содержание в используемом в известном способе титансодержащем материале – металлоконцентрате посторонних примесей (от 50 до 80%), на дополнительный подогрев которых при легировании требуется дополнительный расход тепла, способствует дополнительному перегреву металла перед разливкой, что приводит к ухудшению качества готового металла и снижению полноты процесса легирования стали. Кроме того, посторонние примеси, входящие в состав титансодержащего металлоконцентрата, при попадании в объем жидкого металла являются инициаторами образования неметаллических включений, что приводит к загрязнению стали и ухудшению ее качества. Наиболее близким аналогом заявляемого изобретения является способ раскисления и микролегирования низколегированной малоуглеродистой стали (А.с. СССР 1772171, кл. С 21 С 7/00, опубл. 30.10.1992 г.), включающий выплавку металла в сталеплавильном агрегате, отбор и химический анализ пробы перед раскислением, ввод в жидкий металл марганецсодержащего материала, в качестве которого используютсиликомарганец, выпуск металла в ковш, подачу в ковш во время выпуска металла кремния, алюминия и материала, содержащего микролегирующий элемент – ниобий, причем легирование проводят минимальным количеством требуемого для микролегирования ниобия, определяемым по формуле ![]() где [%Nb] – минимальное количество ниобия, требующееся для микролегирования, мас.%; [%С] , [%S] , [%P] – суммарное содержание углерода, серы и фосфора в расплаве перед раскислением, мас.%;К – опытный коэффициент, учитывающий усвоение ниобия, равный 0,85-0,95. Признаки ближайшего аналога, совпадающие с существенными признаками заявляемого изобретения: выплавка металла в сталеплавильном агрегате, ввод марганецсодержащего материала в жидкий металл, подача во время выпуска металла в ковш материала, содержащего микролегирующие элементы. Предварительное легирование стали марганцем в известном способе осуществляют в сталеплавильном агрегате (мартеновская печь) вводом в него силикомарганца до получения 1,5% марганца в готовой стали. Это приводит к нерациональному расходу легирующего материала – силикомарганца, потому что легирование металла проводят в присутствии печного окислительного шлака. Кроме того, образующиеся в результате раскисления металла силикатные неметаллические включения в совокупности с сульфидами марганца и железа загрязняют металл. Последующие добавки во время выпуска металла в ковш ферросилиция усугубляют загрязненность металла хрупкими силикатами, наличие которых в металле не только способствует снижению его качественных характеристик, но и препятствует проведению интенсивной десульфурации металла. Кроме того, высокое содержание серы и фосфора ( 0,010% каждого), неизбежно содержащихся в таких количествах в стали, полученной по известному способу, является препятствием для проведения процесса модифицирования, например, высокоактивными элементами, потому что они будут расходоваться преимущественно на раскисление и десульфурацию металла.
Все это приводит к снижению качества готовой стали в результате ее загрязненности неметаллическими включениями.
В основу изобретения поставлена задача усовершенствования способа легирования стали путем оптимизации технологии. Ожидаемый технический результат – создание благоприятных физико-химических условий легирования стали за счет использования тепла легируемого металла, кинетической энергии падающей струи выпускаемого металла, конвективных потоков металла, что приводит к снижению загрязненности стали неметаллическими включениями и повышению ее качества.
Технический результат достигается тем, что в способе легирования стали, включающем выплавку металла в сталеплавильном агрегате, ввод марганецсодержащего материала в жидкий металл, подачу во время выпуска металла в ковш материала, содержащего микролегирующие элементы, по изобретению в качестве марганецсодержащего материала используют материал, содержащий оксиды марганца, а материал, содержащий микролегирующие элементы, подают совместно с вводимым марганецсодержащим материалом и дополнительно подаваемым восстановителем в объем струи выпускаемого металла с совмещением начала их подачи с началом выпуска металла в ковш и окончанием их подачи с выпуском 93-95% массы выпускаемого металла.
Целесообразно подачу материалов в объем струи выпускаемого металла вести с ориентацией сверху вниз под углом 30-60o к оси струи выпускаемого металла.
Целесообразно использовать в качестве восстановителя сплав алюминия и карбида кальция, взятых в соотношении 4:1.
Сущность предлагаемого способа легирования стали заключается в том, что подачу в ковш марганецсодержащего материала, содержащего оксиды марганца, материала, содержащего микролегирующие элементы, и восстановителя производят таким способом, чтобы обеспечить возможность максимального полезного использования тепла легируемого металла, кинетической энергии падающей струи и конвективных потоков металла в ковше.
Для этого подачу всех материалов в ковш ориентируют для их ввода в объем струи выпускаемого металла, а материалы, содержащие оксиды марганца и микролегирующие элементы, подбирают с такими физико-химическими характеристиками, которые обеспечивают при смешении этих материалов в необходимых соотношениях в совокупности с подаваемым одновременно восстановителем интенсивное плавление и восстановление легирующих элементов. Начало подачи всех материалов и восстановителя совмещают с началом выпуска металла в ковш, а заканчивают с выпуском 93-95% массы выпускаемого металла.
Марганецсодержащий материал, содержащий оксиды марганца, подают в объем струи выпускаемого металла совместно с материалом, содержащим микролегирующие элементы, для ускорения плавления тугоплавких материалов, потому что большинство неметаллических материалов, содержащих микролегирующие элементы, имеют температуру плавления выше температуры выпускаемого из сталеплавильного агрегата металла. Кроме того, восстанавливаемый в процессе легирования марганец, является легирующей добавкой преимущественного большинства марок стали, поэтому использование в предлагаемом способе марганецсодержащего материала, содержащего оксиды марганца, приводит также к снижению расхода марганцевых ферросплавов или их полной замене.
Подача материалов, содержащих оксиды марганца и микролегирующие элементы, в объем струи выпускаемого металла обеспечивает интенсивный их подогрев и плавление, а подаваемый одновременно со смесью материалов в объем струи восстановитель обеспечивает при своем плавлении интенсивный восстановительный процесс. Необходимость подачи в объем струи всех материалов и восстановителя вызван тем, что за время падения струи металла в ковш происходит интенсивный подогрев материалов и их частичное расплавление. Этот эффект достигается тем, что подаваемые материалы полностью экранированы металлом падающей струи от контакта с атмосферой, поэтому их нагрев и плавление происходит с высокой скоростью. Кроме того, падающая струя выпускаемого металла обладает высокой кинетической энергией, увлекает попавшие в струю материалы в объем металла и препятствует их всплыванию.
Попавшие в объем металла материалы, содержащие оксиды марганца и микролегирующие элементы, совместно с восстановителем, оплавляясь, вступают в металлотермическую реакцию восстановления, при этом металлические составляющие продуктов реакции восстановления – марганец и микролегирующие элементы равномерно распределяются в объеме металла в результате его перемешивания конвективными потоками, а образующиеся оксиды восстановителя коагулируют между собой, образуя груды, которые всплывают на границу раздела металл-шлак и поглощаются покровным шлаком. Этому способствуют благоприятные кинетические условия предлагаемого способа, согласно которому в состав восстановителя входят углеродсодержащие компоненты, которые, вступая в карботермическую реакцию восстановления легирующих элементов, образуют газообразный монооксид углерода, всплывающие пузырьки которого в объеме жидкого металла увлекают за собой жидкие оксиды восстановителя.
Подачу всех материалов в объем струи выпускаемого металла совмещают с началом выпуска металла из сталеплавильного агрегата в ковш, потому что изменение гидродинамики и интенсивности массообменных процессов, особенно значительных в начальный период выпуска, незначительно влияет на протекание восстановительного процесса, осуществляемого согласно заявляемому способу. Это связано с тем, что процесс восстановления марганца и микролегирующих элементов протекает в жидкофазной области, компонентами которой являются гомогенная фаза плавящихся материалов, содержащих оксиды марганца и микролегирующие элементы, а также частично расплавившийся восстановитель, причем перемещение в объеме металла компонентов реакции происходит синхронно, потому что их плотности близки по своим значениям и существенно меньше плотности металла.
Подачу всех материалов в объем струи выпускаемого металла заканчивают согласно предлагаемому способу с выпуском 93-95% массы выпускаемого металла. Это связано с необходимостью обеспечения полного растворения в объеме металла всех подаваемых материалов до окончания выпуска, потому что после прекращения выпуска металла в ковш резко изменяются гидродинамические условия, скорость массообменных процессов существенно снижается и тем самым создаются условия для всплывания не растворившихся материалов и восстановителя на поверхность шлако-металлического расплава, что приводит к их нерациональному использованию – взаимодействию восстановителя с кислородом шлака и атмосферы, а также ошлаковыванием непрореагировавших материалов, содержащих оксиды марганца и микролегирующих элементов.
Для обеспечения более уверенного попадания подаваемых материалов и восстановителя в объем струи выпускаемого металла целесообразно осуществлять подачу с использованием, например, питателя определенной конструкции, обеспечивающего ввод подаваемых материалов сверху вниз под острым углом (30-60o) по отношению к оси струи выпускаемого металла.
В качестве микролегирующих элементов могут быть выбраны любые необходимые для конкретной марки стали элементы, при условии, что они входят в состав неметаллических материалов, в количестве, обеспечивающем возможность восстановления их для требуемых содержаний в готовом металле.
Целесообразно в предлагаемом способе использовать в качестве восстановителя сплав на алюминиевой основе с долей углеродсодержащего материала, потому что в этом случае расширяется диапазон его использования при производстве широкого сортамента марок стали. Кроме того, углеродсодержащий материал необходим для регулирования термичности используемой для легирования смеси, а также для интенсификации массообменных процессов, сопровождающих восстановительный процесс, потому что в результате барботажа металла образующимися пузырьками монооксида углерода обеспечивается удаление оксидных продуктов, образующихся в результате металлотермических реакций восстановления легирующих элементов.
Пример.
Выплавку стали по предлагаемому способу проводили в 350-тонном конвертере. В конвертер заливали жидкий чугун химического состава, мас.%: С – 4,2; Si – 0,71; Mn – 0,20; S – 0,020; Р – 0,095, железо – остальное, подавали шлакообразующие материалы: известь химического состава, мас.%: СаО – 94; MgO – 4,7, прочие побочные примеси – остальное, плавиковый шпат и продували кислородом. По достижению температуры 1650oС при содержании углерода 0,05% металл выпускали в сталеразливочный ковш. С началом выпуска в объем падающей струи выпускаемого металла подавали марганецсодержащий оксидный материал – концентрат химического обогащения фракцией 0,5-1,0 мм следующего химического состава, мас. %: МnO2 – 98,0; Р – 0,01; Аl – 0,002; Ni – 0,02; Cr – 0,02; (Na+К) – 0,03; Са – 0,03; С – 0,007; Ti – 0,04; Mg – 0,03; Si – 0,015; Со – 0,014 в количестве 25,5 кг/т, материал, содержащий микролегирующий элемент – ниобий, в виде ниобиевого пирохлорового концентрата фракцией 1,0-1,5 мм, содержащий, мас.%: (Nb2O5+Ta2O5) – 38,0; Р – 0,75; SiO2 – 11,4; TiO2 – 11,4; S – 0,05; Н2О 1,0, в количествае 0,46 кг/т и восстановитель в виде гранул фракцией 1,0-2,0 мм, состоящий из сплава алюминия марки АВ 86 и карбида кальция, взятых в соотношении 4:1 с расходом 1,5 кг/т.
Подачу всех материалов осуществляли в объем струи выпускаемого металла с помощью манипулятора, ориентирующего направление потока материалов сверху вниз под углом 45o к оси струи выпускаемого металла. Дополнительно в ковш во время выпуска добавили алюминий марки АВ-86 с расходом 1 кг/т, ферросилиций марки ФС-65 с расходом 4,5 кг/т и феррованадий марки ФВд-35А с расходом 4,5 кг/т. После выпуска 95% массы выпускаемого металла подачу материалов и восстановителя прекратили.
Готовую сталь разливали в слитки массой 12,5 кг, прокатывали на лист толщиной 10-12 мм и проводили металлографические исследования.
Получили сталь следующего химического состава, мас.%: С – 0,09; Мn – 1,55; Si – 0,25; S – 0,005; Р – 0,007; Nb – 0,030; Al – 0,035; V – 0,09.
Степень извлечения марганца составила 95,9%, а степень извлечения ниобия – 92,3%. Загрязненность стали неметаллическими включениями (в баллах) составила: оксиды – 1,2; сульфиды – 0,7; силикаты – 1,3.
Плавку стали по способу ближайшего аналога проводили также в 350-тонном конвертере с отбором пробы и анализом металла в конце продувки, содержащего, мас. %: С – 0,08; S – 0,015; Р – 0,10, с подачей силикомарганца в конвертер из расчета получения среднемарочного содержания марганца. Во время выпуска металла в ковш добавляли ферросилиций из расчета получения 0,25-0,27% кремния в готовой стали, алюминий в количестве 1 кг/т стали, феррованадий марки ФВд-35А в количестве 4,5 кг/т, феррониобий марки ФН-2 с содержанием (Nb+Та) 60% в количестве 0,44 кг/т, расход которого определили по формуле![]() где [%Nb] – минимальное количество ниобия, требующееся для микролегирования, мас.%; [%С], [%S], [%P] – суммарное содержание углерода, серы и фосфора в расплаве перед раскислением, мас.%;К – опытный коэффициент, учитывающий усвоение ниобия, равный 0,85-0,95. Приняв К равным 0,9, вычислили [%Nb]=0,02%. Готовую сталь разливали в слитки массой 12,5 т, прокатывали на лист толщиной 10-12 мм и проводили металлографические исследования. Получили сталь следующего химического состава, мас.%: С – 0,10; Мn – 1,51; Si – 0,26; S – 0,015; Р – 0,010; Nb – 0,022; Al – 0,033; V – 0,08. Степень извлечения марганца составила 83%, а степень извлечения ниобия 90%. Загрязненность стали неметаллическими включениями (в баллах) составила: оксиды – 2,5; сульфиды – 2,7; силикаты – 3,2. В таблице приведены механические свойства сталей, легированных предлагаемым способом и способом – ближайшим аналогом. Как видно из приведенных результатов исследований, сталь по предлагаемому способу отличается более высокой чистотой по содержанию неметаллических включений всех типов, а также более высокими механическими свойствами. Это связано с тем, что используемые в предлагаемом способе материалы, а также их подача в процессе легирования металла приводит к снижению загрязненности стали неметаллическими включениями, улучшению механических характеристик и повышению ее качества за счет создания благоприятных физико-химических условий легирования стали в результате использования тепла легируемого металла, кинетической энергии падающей струи выпускаемого металла и конвективных потоков металла. Формула изобретения 1. Способ легирования стали, включающий выплавку металла в сталеплавильном агрегате, ввод марганецсодержащего материала в жидкий металл, подачу во время выпуска металла в ковш материала, содержащего микролегирующие элементы, отличающийся тем, что в качестве марганецсодержащего материала используют материал, содержащий оксиды марганца, а материал, содержащий микролегирующие элементы, подают совместно с вводимым марганецсодержащим материалом и дополнительно подаваемым восстановителем в объем струи выпускаемого металла с совмещением начала их подачи с началом выпуска металла в ковш и окончанием их подачи с выпуском 93-95% массы выпускаемого металла. 2. Способ по п.1, отличающийся тем, что подачу материалов в объем струи выпускаемого металла ведут с ориентацией сверху вниз под углом 30-60 к оси струи выпускаемого металла.
3. Способ по п.1, отличающийся тем, что в качестве восстановителя используют сплав алюминия и карбида кальция, взятых в соотношении 4:1.
РИСУНКИ
PD4A – Изменение наименования обладателя патента Российской Федерации на изобретение
(73) Новое наименование патентообладателя:
Извещение опубликовано: 20.01.2006 БИ: 02/2006
PC4A – Регистрация договора об уступке патента Российской Федерации на изобретение
(73) Патентообладатель(и):
(73) Патентообладатель:
Дата и номер государственной регистрации перехода исключительного права: 06.04.2006 № РД0008032
Извещение опубликовано: 10.06.2006 БИ: 16/2006
PC4A – Регистрация договора об уступке патента Российской Федерации на изобретение
(73) Патентообладатель:
(73) Патентообладатель:
(73) Патентообладатель:
(73) Патентообладатель:
(73) Патентообладатель:
(73) Патентообладатель:
(73) Патентообладатель:
Дата и номер государственной регистрации перехода исключительного права: 06.04.2006 № РД0008027
Извещение опубликовано: 10.06.2006 БИ: 16/2006
|
||||||||||||||||||||||||||


[%С] , [%S] , [%P] – суммарное содержание углерода, серы и фосфора в расплаве перед раскислением, мас.%;
0,010% каждого), неизбежно содержащихся в таких количествах в стали, полученной по известному способу, является препятствием для проведения процесса модифицирования, например, высокоактивными элементами, потому что они будут расходоваться преимущественно на раскисление и десульфурацию металла.
Все это приводит к снижению качества готовой стали в результате ее загрязненности неметаллическими включениями.
В основу изобретения поставлена задача усовершенствования способа легирования стали путем оптимизации технологии. Ожидаемый технический результат – создание благоприятных физико-химических условий легирования стали за счет использования тепла легируемого металла, кинетической энергии падающей струи выпускаемого металла, конвективных потоков металла, что приводит к снижению загрязненности стали неметаллическими включениями и повышению ее качества.
Технический результат достигается тем, что в способе легирования стали, включающем выплавку металла в сталеплавильном агрегате, ввод марганецсодержащего материала в жидкий металл, подачу во время выпуска металла в ковш материала, содержащего микролегирующие элементы, по изобретению в качестве марганецсодержащего материала используют материал, содержащий оксиды марганца, а материал, содержащий микролегирующие элементы, подают совместно с вводимым марганецсодержащим материалом и дополнительно подаваемым восстановителем в объем струи выпускаемого металла с совмещением начала их подачи с началом выпуска металла в ковш и окончанием их подачи с выпуском 93-95% массы выпускаемого металла.
Целесообразно подачу материалов в объем струи выпускаемого металла вести с ориентацией сверху вниз под углом 30-60o к оси струи выпускаемого металла.
Целесообразно использовать в качестве восстановителя сплав алюминия и карбида кальция, взятых в соотношении 4:1.
Сущность предлагаемого способа легирования стали заключается в том, что подачу в ковш марганецсодержащего материала, содержащего оксиды марганца, материала, содержащего микролегирующие элементы, и восстановителя производят таким способом, чтобы обеспечить возможность максимального полезного использования тепла легируемого металла, кинетической энергии падающей струи и конвективных потоков металла в ковше.
Для этого подачу всех материалов в ковш ориентируют для их ввода в объем струи выпускаемого металла, а материалы, содержащие оксиды марганца и микролегирующие элементы, подбирают с такими физико-химическими характеристиками, которые обеспечивают при смешении этих материалов в необходимых соотношениях в совокупности с подаваемым одновременно восстановителем интенсивное плавление и восстановление легирующих элементов. Начало подачи всех материалов и восстановителя совмещают с началом выпуска металла в ковш, а заканчивают с выпуском 93-95% массы выпускаемого металла.
Марганецсодержащий материал, содержащий оксиды марганца, подают в объем струи выпускаемого металла совместно с материалом, содержащим микролегирующие элементы, для ускорения плавления тугоплавких материалов, потому что большинство неметаллических материалов, содержащих микролегирующие элементы, имеют температуру плавления выше температуры выпускаемого из сталеплавильного агрегата металла. Кроме того, восстанавливаемый в процессе легирования марганец, является легирующей добавкой преимущественного большинства марок стали, поэтому использование в предлагаемом способе марганецсодержащего материала, содержащего оксиды марганца, приводит также к снижению расхода марганцевых ферросплавов или их полной замене.
Подача материалов, содержащих оксиды марганца и микролегирующие элементы, в объем струи выпускаемого металла обеспечивает интенсивный их подогрев и плавление, а подаваемый одновременно со смесью материалов в объем струи восстановитель обеспечивает при своем плавлении интенсивный восстановительный процесс. Необходимость подачи в объем струи всех материалов и восстановителя вызван тем, что за время падения струи металла в ковш происходит интенсивный подогрев материалов и их частичное расплавление. Этот эффект достигается тем, что подаваемые материалы полностью экранированы металлом падающей струи от контакта с атмосферой, поэтому их нагрев и плавление происходит с высокой скоростью. Кроме того, падающая струя выпускаемого металла обладает высокой кинетической энергией, увлекает попавшие в струю материалы в объем металла и препятствует их всплыванию.
Попавшие в объем металла материалы, содержащие оксиды марганца и микролегирующие элементы, совместно с восстановителем, оплавляясь, вступают в металлотермическую реакцию восстановления, при этом металлические составляющие продуктов реакции восстановления – марганец и микролегирующие элементы равномерно распределяются в объеме металла в результате его перемешивания конвективными потоками, а образующиеся оксиды восстановителя коагулируют между собой, образуя груды, которые всплывают на границу раздела металл-шлак и поглощаются покровным шлаком. Этому способствуют благоприятные кинетические условия предлагаемого способа, согласно которому в состав восстановителя входят углеродсодержащие компоненты, которые, вступая в карботермическую реакцию восстановления легирующих элементов, образуют газообразный монооксид углерода, всплывающие пузырьки которого в объеме жидкого металла увлекают за собой жидкие оксиды восстановителя.
Подачу всех материалов в объем струи выпускаемого металла совмещают с началом выпуска металла из сталеплавильного агрегата в ковш, потому что изменение гидродинамики и интенсивности массообменных процессов, особенно значительных в начальный период выпуска, незначительно влияет на протекание восстановительного процесса, осуществляемого согласно заявляемому способу. Это связано с тем, что процесс восстановления марганца и микролегирующих элементов протекает в жидкофазной области, компонентами которой являются гомогенная фаза плавящихся материалов, содержащих оксиды марганца и микролегирующие элементы, а также частично расплавившийся восстановитель, причем перемещение в объеме металла компонентов реакции происходит синхронно, потому что их плотности близки по своим значениям и существенно меньше плотности металла.
Подачу всех материалов в объем струи выпускаемого металла заканчивают согласно предлагаемому способу с выпуском 93-95% массы выпускаемого металла. Это связано с необходимостью обеспечения полного растворения в объеме металла всех подаваемых материалов до окончания выпуска, потому что после прекращения выпуска металла в ковш резко изменяются гидродинамические условия, скорость массообменных процессов существенно снижается и тем самым создаются условия для всплывания не растворившихся материалов и восстановителя на поверхность шлако-металлического расплава, что приводит к их нерациональному использованию – взаимодействию восстановителя с кислородом шлака и атмосферы, а также ошлаковыванием непрореагировавших материалов, содержащих оксиды марганца и микролегирующих элементов.
Для обеспечения более уверенного попадания подаваемых материалов и восстановителя в объем струи выпускаемого металла целесообразно осуществлять подачу с использованием, например, питателя определенной конструкции, обеспечивающего ввод подаваемых материалов сверху вниз под острым углом (30-60o) по отношению к оси струи выпускаемого металла.
В качестве микролегирующих элементов могут быть выбраны любые необходимые для конкретной марки стали элементы, при условии, что они входят в состав неметаллических материалов, в количестве, обеспечивающем возможность восстановления их для требуемых содержаний в готовом металле.
Целесообразно в предлагаемом способе использовать в качестве восстановителя сплав на алюминиевой основе с долей углеродсодержащего материала, потому что в этом случае расширяется диапазон его использования при производстве широкого сортамента марок стали. Кроме того, углеродсодержащий материал необходим для регулирования термичности используемой для легирования смеси, а также для интенсификации массообменных процессов, сопровождающих восстановительный процесс, потому что в результате барботажа металла образующимися пузырьками монооксида углерода обеспечивается удаление оксидных продуктов, образующихся в результате металлотермических реакций восстановления легирующих элементов.
Пример.
Выплавку стали по предлагаемому способу проводили в 350-тонном конвертере. В конвертер заливали жидкий чугун химического состава, мас.%: С – 4,2; Si – 0,71; Mn – 0,20; S – 0,020; Р – 0,095, железо – остальное, подавали шлакообразующие материалы: известь химического состава, мас.%: СаО – 94; MgO – 4,7, прочие побочные примеси – остальное, плавиковый шпат и продували кислородом. По достижению температуры 1650oС при содержании углерода 0,05% металл выпускали в сталеразливочный ковш. С началом выпуска в объем падающей струи выпускаемого металла подавали марганецсодержащий оксидный материал – концентрат химического обогащения фракцией 0,5-1,0 мм следующего химического состава, мас. %: МnO2 – 98,0; Р – 0,01; Аl – 0,002; Ni – 0,02; Cr – 0,02; (Na+К) – 0,03; Са – 0,03; С – 0,007; Ti – 0,04; Mg – 0,03; Si – 0,015; Со – 0,014 в количестве 25,5 кг/т, материал, содержащий микролегирующий элемент – ниобий, в виде ниобиевого пирохлорового концентрата фракцией 1,0-1,5 мм, содержащий, мас.%: (Nb2O5+Ta2O5) – 38,0; Р – 0,75; SiO2 – 11,4; TiO2 – 11,4; S – 0,05; Н2О
1,0, в количествае 0,46 кг/т и восстановитель в виде гранул фракцией 1,0-2,0 мм, состоящий из сплава алюминия марки АВ 86 и карбида кальция, взятых в соотношении 4:1 с расходом 1,5 кг/т.
Подачу всех материалов осуществляли в объем струи выпускаемого металла с помощью манипулятора, ориентирующего направление потока материалов сверху вниз под углом 45o к оси струи выпускаемого металла. Дополнительно в ковш во время выпуска добавили алюминий марки АВ-86 с расходом 1 кг/т, ферросилиций марки ФС-65 с расходом 4,5 кг/т и феррованадий марки ФВд-35А с расходом 4,5 кг/т. После выпуска 95% массы выпускаемого металла подачу материалов и восстановителя прекратили.
Готовую сталь разливали в слитки массой 12,5 кг, прокатывали на лист толщиной 10-12 мм и проводили металлографические исследования.
Получили сталь следующего химического состава, мас.%: С – 0,09; Мn – 1,55; Si – 0,25; S – 0,005; Р – 0,007; Nb – 0,030; Al – 0,035; V – 0,09.
Степень извлечения марганца составила 95,9%, а степень извлечения ниобия – 92,3%. Загрязненность стали неметаллическими включениями (в баллах) составила: оксиды – 1,2; сульфиды – 0,7; силикаты – 1,3.
Плавку стали по способу ближайшего аналога проводили также в 350-тонном конвертере с отбором пробы и анализом металла в конце продувки, содержащего, мас. %: С – 0,08; S – 0,015; Р – 0,10, с подачей силикомарганца в конвертер из расчета получения среднемарочного содержания марганца. Во время выпуска металла в ковш добавляли ферросилиций из расчета получения 0,25-0,27% кремния в готовой стали, алюминий в количестве 1 кг/т стали, феррованадий марки ФВд-35А в количестве 4,5 кг/т, феррониобий марки ФН-2 с содержанием (Nb+Та)
к оси струи выпускаемого металла.
3. Способ по п.1, отличающийся тем, что в качестве восстановителя используют сплав алюминия и карбида кальция, взятых в соотношении 4:1.