Патент на изобретение №2220463
|
||||||||||||||||||||||||||
(54) ТЕРМОЯДЕРНЫЙ РЕАКТОР
(57) Реферат: Использование: в ядерной технике, в термоядерных реакторах. Сущность изобретения: в термоядерном реакторе, содержащем вакуумный корпус и бланкет, который выполнен из модулей, снабженных системой регулировки их положения, система регулировки выполнена в виде размещенных в гнездах вакуумного корпуса опорно-эксцентриковых узлов, при этом модули установлены и закреплены на опорно-эксцентриковых узлах. Технический результат, который может быть получен при осуществлении настоящего изобретения, заключается в том, что за счет возможности регулирования положения модулей бланкета при монтаже бланкет образует вакуумную полость, максимально приближенную к расчетной организации рабочего пространства термоядерного реактора. Кроме того, предлагаемая конструкция термоядерного реактора позволяет сократить технологические зазоры в бланкете, а также упрощает вывод коммуникаций непосредственно от бланкета через вакуумный корпус, что повышает надежность реактора и упрощает его конструкцию. 3 з.п. ф-лы, 21 ил. Предлагаемое изобретение относится к области ядерной техники и может быть использовано в термоядерных реакторах. Известен термоядерный реактор, содержащий вакуумный корпус, в котором размещены сегменты бланкета со средствами крепления и опорная конструкция, собранная из элементов П-образной формы, на внутренних боковых стенках которых выполнены вертикальные канавки, расположенные друг за другом по высоте элементов и, по крайней мере, одного выступа и стопоров, расположенных на боковых стенках сегментов, причем стопоры снабжены приводами, расположенными внутри бланкета, высота и ширина выступа на сегменте соответствует высоте и глубине горизонтального паза на опорном элементе, а глубина вертикальных канавок соответствует рабочему ходу стопора сегмента. Элементы опорной конструкции установлены с возможностью перемещения в радиальном направлении относительно корпуса, кроме того, опорные элементы на корпусе закреплены разъемно (см. патент РФ 2056650, “Термоядерный реактор”, МПК G 21 B 1/00, 1993 г.). Недостатки известного реактора заключаются в следующем: – опорная конструкция, форма которой только повторяет профиль вакуумного корпуса, не обеспечивает в полной мере создание бланкетом наиболее рационального, близкого к расчетному рабочему пространству термоядерного реактора; – бланкет, каждый ряд которого образован сегментами, расположенными друг от друга на расстоянии, равном толщине двух боковых стенок П-образных элементов опорной конструкции, в результате чего в бланкете имеются значительные зазоры ~100 мм, что неблагоприятно сказывается на режиме работы реактора; – установка сегментов бланкета в П-образных элементах опорной конструкции не позволяет осуществлять поперечное смещение элементов бланкета, что усложняет компановку бланкета нужного профиля; – наличие опорной конструкции такого типа не позволяет осуществить вывод коммуникаций непосредственно от сегментов бланкета кратчайшим путем через вакуумный корпус. Наиболее близким по совокупности существенных признаков к предлагаемому изобретению является термоядерный реактор, содержащий вакуумный корпус и бланкет (см. патент РФ 2086008, “Термоядерный реактор”, МПК G 21 В 1/00, 1995 г.). Кроме того, в термоядерном реакторе бланкет выполнен из сегментов, которые установлены на опорной конструкции, снабженной продольными ребрами. На всю ширину ребер проделаны сквозные пазы для фиксации выступов, которыми снабжены боковые стенки сегментов бланкета и по длине которых проделаны сквозные щели под задвижки, расположенные в боковых стенках сегментов с возможностью вращения. Недостатки прототипа заключаются в следующем: – опорная конструкция, форма которой только повторяет профиль вакуумного корпуса и не обеспечивает в полной мере создание бланкетом наиболее рациональной, близкой к расчетной форме рабочее пространство термоядерного реактора, в виду отсутствия регулировок в опорной конструкции сегментов бланкета; – элементы бланкета, закрепленные в опорной конструкции по высоте друг за другом, разделены боковыми стенками опорной конструкции, что не позволяет осуществлять при монтаже поперечное смещение элементов бланкета и усложняет компановку бланкета нужного профиля; – бланкет образован сегментами, каждый ряд которого расположен друг от друга на расстоянии, равном толщине двух боковых стенок П-образных элементов опорной конструкции, в результате чего в бланкете имеются значительные зазоры ~100 мм, что неблагоприятно сказывается на режиме работы реактора. – наличие опорной конструкции не позволяет осуществить вывод коммуникаций непосредственно от сегментов бланкета кратчайшим путем через вакуумный корпус. Технический результат, который может быть получен при осуществлении настоящего изобретения, заключается в том, что в предлагаемой конструкции бланкет образует вакуумную полость, максимально приближенную к расчетной организации рабочего пространства термоядерного реактора, за счет возможности регулирования при монтаже, что позволяет повысить надежность реактора и упростить конструкцию. Указанный технический результат достигается тем, что в известном термоядерном реакторе, содержащем вакуумный корпус и бланкет, бланкет в реакторе выполнен из модулей, снабженных системой регулировки их положения, система регулировки выполнена в виде размещенных в гнездах вакуумного корпуса опорно-эксцентриковых узлов, при этом модули установлены и закреплены на опорно-эксцентриковых узлах; кроме того, опорно-эксцентриковый узел выполнен в виде большого эксцентрика, в котором установлен малый эксцентрик с опорой, эксцентриситеты обоих эксцентриков равны между собой, а опора выполнена полой и снабжена фланцами, один фланец соединен с модулем, а второй фланец закреплен в стакане, который установлен в малом эксцентрике, при этом ось фланца образует с осью опоры острый угол, а цилиндрическая полость стакана выполнена наклонной относительно его оси и имеет угол наклона, равный углу между осями опоры и фланца, кроме того, модули бланкета закреплены на опорно-эксцентриковых узлах посредством болтов и компенсационной втулки, при этом резьбовая часть болтов соединена с модулем, болт проходит через опору, а компенсационная втулка установлена между головкой болта и фланцем опоры; кроме того, опорно-эксцентриковый узел снабжен прижимной шайбой, размещенной на фланце опоры, а в гнезде вакуумного корпуса установлена гайка, взаимодействующая с прижимной шайбой и образующая с поверхностью гнезда винтовую пару, при этом внутренние поверхности прижимной шайбы и гайки имеют развал, образующий со своими осями угол не менее 2 ![]() кроме того, на боковой поверхности опоры по всему периметру выполнены сквозные продольные прорези, образующие спицы, причем ширина спиц и их толщина равны друг другу, а отношение высоты спицы к внешнему диаметру опоры равно 1,08. Сущность изобретения поясняется чертежами где, на фиг.1 представлено продольное сечение реактора; на фиг.2 представлена схема размещения модулей в бланкете и места крепления модулей бланкета на вакуумной камере; на фиг.3 показана схема установки на вакуумном корпусе двух опорно-эксцентриковых узлов системы регулирования положения для одного модуля; на фиг.4 показана схема расположения одного из модулей бланкета относительно теоретической внешней границы плазмы и положение осей модуля в местах его стыковки с вакуумным корпусом; на фиг.5 показано продольное сечение опорно-эксцентрикового узла на вакуумном корпусе; на фиг.6 представлена опора в изометрии; фиг.7 представлена схема продольного сечения, проходящего через модуль в месте его стыковки с опорно-эксцентриковым узлом; на фиг.8 показан вид опорно-эксцентрикового узла сверху на фиг. 7; на фиг.9 показано продольное сечение стакана; на фиг.10 показана схема продольного сечения, проходящего через ось стыковки модуля и ось опорно-эксцентрикового узла в случае, когда указанные оси не совпадают; на фиг.11 показан вид опорно-эксцентрикового узла сверху на фиг. 10; на фиг.12 представлена схема продольного сечения модуля и опорно-эксцентрикового узла после компенсации межосевого расстояния; на фиг.13 показан вид опорно-эксцентрикового узла сверху на фиг.12; на фиг.14 представлено продольное сечение модуля и опорно-эксцентрикового узла в случае, когда плоскость посадочного места опорно-эксцентрикового узла в вакуумном корпусе находится под острым углом к стыковочному месту модуля; на фиг.15 показана схема продольного сечения модуля и эксцентрикового узла после их стыковки; на фиг.16 показан вид опорно-эксцентрикового узла сверху на фиг. 15; на фиг. 17 показана схема продольного сечения, проходящего через ось стыковки модуля и ось опорно-эксцентрикового узла в случае, когда указанные оси не совпадают, а плоскость посадочного места опорно-эксцентрикового узла в вакуумном корпусе находится под острым углом к плоскости стыковки на модуле; на фиг. 18 представлена схема продольного сечения модуля и опорно-эксцентрикового узла, у которого плоскость торца опоры приведена в положение, параллельное месту стыковке на модуле; на фиг.19 показан вид опорно-эксцентрикового узла сверху на фиг.18; на фиг.20 представлено продольное сечение модуля и опорно-эксцентрикового узла после компенсации углов и межосевых расстояний; на фиг.21 показан вид опорно-эксцентрикового узла сверху на фиг.20. Термоядерный реактор содержит вакуумный корпус 1, бланкет 2, состоящий из модулей 3, и систему регулировки 4 положения модулей 3 бланкета 2 в вакуумном корпусе 1. Система регулировки 4 положения модулей 3 представляет собой опорно-эксцентриковые узлы 5, размещенные в гнездах 6 вакуумного корпуса 1. Каждый модуль 3 установлен и закреплен на четырех опорно-эксцентриковых узлах 5. В местах крепления на модулях 3 имеются сквозные отверстия 7, которые выполнены под средства крепления 8, связывающие модули 3 с опорно-экоцентриковыми узлами 5. Опорно-эксцентриковый узел 5 состоит из большого эксцентрика 9, в котором расположен малый эксцентрик 10 с опорой 11. Эксцентриситет ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() где ![]() ![]() b – межосевое расстояние; е – экцентриситет; ![]() ![]() ![]() ![]() ![]() ![]() ![]() На посадочном месте в гнезде 6 вакуумного корпуса 1 размещают опорно-эксцентриковый узел 5, находящийся в исходном положении. Затем стакан 14 вместе с опорой 11 поворачивают в малом эксцентрике 10 относительно нулевой риски k6 на угол ![]() ![]() ![]() ![]() ![]() Так как внутренние поверхности прижимной шайбы 16, гайки 17 и контргайки 18 выполнены с развалом, то при наклонном положении опора 11 не касается поверхности гнезда 6, а располагается параллельно ей. Ось (О3) модуля 3 образует с осью (О6) посадочного места на вакуумном корпусе 1 угол ![]() ![]() ![]() ![]() ![]() где ![]() Н – высота опоры между точками А11 и L; ![]() ![]() ![]() ![]() После того как в опорно-эксцентриковом узле 5 ось (О11) опоры 11 совпала с осью (О3) модуля 3 в месте его стыковки, а торцевая поверхность фланца 12 опоры 11 стала параллельной стыковочной поверхности модуля 3, образуя при этом с плоскостью посадочного места на вакуумном корпусе 1 острый угол ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Далее осуществляют регулирование следующих трех опорно-эксцентриковых узлов 5 для одного модуля 3, после чего производят стыковку и фиксирование модуля 5. Таким образом, модули 3, закрепленые на вакуумном корпусе 1, образуют защиту вакуумного корпуса термоядерного реактора, называемую бланкетом 2, от высокотемпературной плазмы и мощного радиационного излучения, сопровождающего процесс горения плазмы. Предложенный реактор функционирует следующим образом. В диверторном пространстве термоядерного реактора зажигают плазму. Под действием теплового нейтронного излучения плазмы модули 3 бланкета 2 разогреваются. Возникающие тепловые расширения модулей 3 в горизонтальных и вертикальном направлении компенсируются за счет свободного расширения модулей 3 в технологических зазорах между ними, при этом тепло от опор 11 отводится через контактные поверхности последних с модулем 3 и вакуумной камерой 1. При срыве плазмы образуется мощный электромагнитный импульс, который воздействует на модули 3 и они оказываются под воздействием сил, величина которых колеблется от 12 МН до 24 МН, причем эти силы имеют полоидальные, тороидальные и радиальные направления. От модулей 3 нагрузки передаются на опоры 11 в опорно-эксцентриковых узлах 5. В результате такого воздействия в спицах 19 опор 11 возникает упругая деформация, под действием которых они изменяют свою форму и компенсируют тем самым действие нагрузок. После гашения плазмы и снятия нагрузок благодаря примененному соотношению длины спиц к внешнему диаметру опоры (1,08) спицы 19 принимают свою первоначальную форму. Таким образом, термоядерный реактор предложенной конструкции повышает точность сборочных работ крупногабаритных конструкций реактора, позволяет организовать рабочее пространство, близкое к расчетному, позволяет значительно сократить зазоры в бланкете, упрощает вывод коммуникаций непосредственно от бланкета через вакуумный корпус в удобных для этого местах, что повышает надежность термоядерного реактора. Компенсация погрешностей при этом составляет ![]() ![]() ![]() ![]() Формула изобретения 1. Термоядерный реактор, содержащий вакуумный корпус и бланкет, отличающийся тем, что бланкет снабжен системой регулировки положения модулей, при этом система регулировки выполнена в виде размещенных в гнездах вакуумного корпуса эксцентриковых узлов, на которых установлены и закреплены модули бланкета, причем эксцентриковый узел содержит большой эксцентрик, в котором установлен малый эксцентрик с опорой, эксцентриситеты обоих эксцентриков равны между собой, а опора выполнена полой и снабжена фланцами, один фланец соединен с модулем, а второй фланец закреплен в стакане, который установлен в малом эксцентрике, при этом ось фланца образует с осью опоры острый угол, а цилиндрическая полость стакана выполнена наклонной относительно его оси и имеет угол наклона, равный углу между осями опоры и фланца. 2. Термоядерный реактор по п.1, отличающийся тем, что модули бланкета закреплены на эксцентриковых узлах посредством болтов и компенсационной втулки, при этом резьбовая часть болтов соединена с модулем, болт проходит через опору, а компенсационная втулка установлена между головкой болта и фланцем опоры. 3. Термоядерный реактор по п.2, отличающийся тем, что эксцетриковый узел снабжен прижимной шайбой, размещенной на фланце опоры, а в гнезде вакуумного корпуса установлена гайка, взаимодействующая с прижимной шайбой и образующая с поверхностью гнезда винтовую пару, при этом внутренние поверхности прижимной шайбы и гайки имеют развал, образующий с своими осями угол не менее 2 ![]() РИСУНКИ
|
||||||||||||||||||||||||||