Патент на изобретение №2149713
|
||||||||||||||||||||||||||
(54) АКУСТИЧЕСКИЙ ИЗЛУЧАТЕЛЬ
(57) Реферат: Изобретение относится к технике создания акустических колебаний в проточной жидкой среде и может быть использовано в химической, пищевой, фармацевтической, машиностроительной и других отраслях промышленности. В акустическом излучателе, содержащем корпус с входным и выходным патрубками, установленные в нем коаксиально цилиндрические ротор и статор с каналами на боковых стенках, причем статор установлен внутри полости ротоpa, а обрабатываемая жидкость подается со стороны наружной поверхности ротора, число каналов ротора и статора равно друг другу и каналы в роторе выполняются к радиусу ротора под углом ![]() ![]() ![]() Изобретение относится к технике создания акустических колебаний в проточной жидкой среде и может быть использовано в химической, пищевой, фармацевтической, машиностроительной и других отраслях промышленности для интенсификации тепло-массообменных и гидродинамических процессов. Известен гидродинамический излучатель, содержащий равное количество концентрично расположенных с одинаковым зазором чередующихся цилиндров ротора и статора с равным количеством одинаковых прорезей, причем прорези ротора и статора в поперечном сечении выполнены с наклоном в противоположные стороны под углом ![]() ![]() где a – ширина прорезей в цилиндрах; b – толщина стенки цилиндров; d – зазор между цилиндрами; n – число цилиндров ротора и статора. Недостатком такого устройства является небольшая плотность акустического поля (а.с. СССР N 1219125 B 01 F 7/28). Наиболее близким к изобретению является акустический излучатель, содержащий корпус с каналами для подвода и отвода среды с установленными в нем коаксильно коническими ротором и статором со щелями на рабочих поверхностях. Внутри корпуса у вершины со стороны канала подвода рабочей среды выполнена сферообразная полость, а у основания – тороидальная полость, радиус окружности которой в поперечном сечении и радиус сферы одинаковы и центры этих радиусов расположены на центральной линии рабочего канала на одинаковом расстоянии от рабочих поверхностей ротора и статора. Недостатком такого устройства является недостаточная концентрация и интенсивность акустического поля (а.с. 1142176 B 06 B 1/18). Техническая задача изобретения – концентрация энергии акустических колебаний и повышение интенсивности акустического поля. Поставленная цель достигается тем, что в акустическом излучателе, содержащем корпус со входным и выходным патрубками, установленные в нем коаксиально цилиндрические ротор и статор с каналами на боковых стенках, причем статор установлен внутри полости ротора, а обрабатываемая жидкость подается со стороны наружной поверхности ротора, число каналов статора и ротора равно друг другу и каналы в роторе выполняются к радиусу ротора под углом ![]() где ![]() Rср – средний радиус ротора, м; a – ширина прямоугольного канала ротора, м; h – высота канала ротора, м; Q – расход жидкости через излучатель, м3/с. На фиг. 1 изображен продольный разрез акустического излучателя, на фиг. 2 – разрез по А-А на фиг. 1. Акустический излучатель содержит корпус 1 с патрубками входа 2 и выхода 3 жидкости, ротор 4 и статор 5 с каналами 6, 7 в боковых стенках ротора и статора соответственно. Число каналов в роторе и статоре равно между собой и выбирается из ряда четных чисел. Длина каналов статора равна радиусу внутренней поверхности статора и кратна 1/4 длины волны. Каналы ротора выполняются под углом ![]() ![]() к радиальной прямой по направлению вращения ротора. Акустический излучатель работает следующим образом. Обрабатываемая жидкость подается через входной патрубок 2, проходит каналы ротора 6 и статора 7, после чего выводится из излучателя через патрубок 3. При вращении ротора 4 его каналы 6 периодически совпадают с каналами статора 7, что приводит к возбуждению в проточной жидкой среде акустических колебаний. Во внутренней полости статора 5 происходит концентрация акустических колебаний. Так как вся обрабатываемая жидкость проходит через внутреннюю полость статора, где подвергается интенсивному акустическому воздействию, то концентрация акустических колебаний в малом объеме способствует интенсификации химико-технологических процессов. При равенстве длины канала статора и радиуса внутренней полости статора возможно возникновение стоячей волны. Такой вид колебаний реализуется при кратности длины канала статора и радиуса полости статора 1/4 длине излучаемой волны. Для синфазного излучения волны в полость статора необходимо, чтобы число каналов в статоре было равно числу каналов в роторе. При вращении ротора на жидкость, проходящую через его каналы, действует центробежная сила, создающая противодавление. Величина противодавления рассчитывается по формуле Эйлера Pц= ![]() ![]() ![]() ![]() где ![]() ![]() Rср – средний радиус ротора, м. Для предотвращения превышения противодавления давлению в полости ротора необходимо соблюсти условие Pвх > Pц. Исходя из этого условия выбираем ![]() Для того чтобы облегчить прохождение жидкости через каналы ротора, их выполняют наклонными под углом ![]() Исходя из теории лопастных насосов, лопатки в центробежных насосах рекомендуют выполнять под углом ![]() Формула изобретения
![]() ![]() где ![]() Rср – средний радиус ротора, м; a – ширина прямоугольного канала ротора, м; h – высота канала ротора, м; Q – расход жидкости через излучатель, м3/с. РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 23.06.2001
Номер и год публикации бюллетеня: 3-2003
Извещение опубликовано: 27.01.2003
|
||||||||||||||||||||||||||