Патент на изобретение №2210836

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2210836 (13) C1
(51) МПК 7
H01L21/203
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 28.03.2011 – прекратил действие

(21), (22) Заявка: 2002103763/28, 11.02.2002

(24) Дата начала отсчета срока действия патента:

11.02.2002

(45) Опубликовано: 20.08.2003

(56) Список документов, цитированных в отчете о
поиске:
ПЧЕЛЯКОВ О.П. и др. Кремний-германиевые наноструктуры с квантовыми точками: механизмы образования и электрические свойства. – ФТП, 2000, т. 34, вып. 11, с.1281-1299. BOCTOKOB Н.В. и др. Упругие напряжения и состав самоорганизующихся наноостровков GeSi на Si(001). – ФТП, 2000, т. 34, вып. 1, с.8-12. ЕР 1178522 А1, 06.02.2002. US 5714765 А, 03.02.1998. US 6103600 А, 15.08.2000.

Адрес для переписки:

391000, г.Рязань, ГСП, ул. Гагарина, 59/1, РГРТА, патентная служба

(71) Заявитель(и):

Рязанская государственная радиотехническая академия

(72) Автор(ы):

Закурдаев И.В.,
Садофьев С.Ю.

(73) Патентообладатель(и):

Рязанская государственная радиотехническая академия

(54) СПОСОБ ФОРМИРОВАНИЯ НАНООСТРОВКОВ ГЕРМАНИЯ НА ВИЦИНАЛЬНОЙ ПОВЕРХНОСТИ КРЕМНИЯ

(57) Реферат:

Использование: в области наноэлектроники для создания на основе структур с наноостровками (квантовыми точками) германия на кремнии полупроводниковых приборов со сверхвысоким быстродействием, а также некоторых оптоэлектронных устройств. Сущность изобретения: способ формирования наноостровков германия на вицинальной поверхности кремния заключается в том, что отжиг вицинальной поверхности кремниевой подложки на стадии предэпитаксиальной подготовки и в процессе напыления германия производится пропусканием постоянного тока в направлении, перпендикулярном фронту ступеней вицинальной грани кремния. Техническим результатом изобретения является формирование высокоплотных высокоупорядоченных и совершенных по структуре массивов наноостровков германия на вицинальной поверхности кремния (III). 2 ил.

Изобретение относится к области наноэлектроники и может быть использовано для создания на основе структур с наноостровками (квантовыми точками) германия на кремнии полупроводниковых приборов со сверхвысоким быстродействием, а также некоторых оптоэлектронных устройств.

Наиболее перспективный метод формирования структур с наноостровками одного полупроводникового материала в матрице другого (квантовыми точками) в настоящее время основан на использовании эффекта самоорганизации поверхности в гетероэпитаксиальных системах вследствие релаксации упругих напряжений, обусловленных несоответствием параметров кристаллических решеток пленки и подложки. При этом для системы кремний-германий самоформирующиеся наноостровки германия характеризуются относительно большими латеральными размерами, что не позволяет в полной мере проявляться эффектам размерного квантования в подобных структурах. Кроме того, локализация островков в плоскости гетероперехода носит случайный характер. Уменьшение размеров островков как правило достигается за счет использования низких температур подложки в процессе осаждения пленки германия, что ухудшает кристаллическое совершенство самоорганизующихся наноостровков и приводит к увеличению их неоднородности по размерам. Примеры использования эффекта постоянного тока для влияния на размеры и степень упорядочения наноостровков в системе кремний-германий нам неизвестны.

1) для создания атомарно-чистой поверхности подложка кремния очищается от слоя естественных окислов косвенным прогревом при температуре 800-900oС в слабом потоке атомов кремния в условиях сверхвысокого вакуума;
2) выращивается буферный слой кремния толщиной 20-200 нм;
3) далее подложка с помощью косвенного источника нагревается до некоторой температуры (обычно 200-700oС), при которой будет осаждаться пленка германия;
4) производится осаждение пленки германия эффективной толщиной от 3 до 15 моноатомных слоев (1 ML =0,14 нм) при скорости роста пленки 0,01-0,05 нм/с;
5) в ряде случаев производится дополнительный (послеростовой) отжиг кристаллов после окончания осаждения германия при температурах подложки 500-700oС в течение 3-30 мин.

Формирующиеся в результате самоорганизации поверхности наноостровки германия имеют следующие существенные недостатки:
1) при относительно высоких температурах подложки в процессе осаждения германия (500-700oС), самоформирующиеся островки характеризуются большими латеральными размерами (150-300 нм), существенно превышающими длину волны де-Бройля для этой системы, что не позволяет проявляться эффектам размерного квантования в данных структурах;
2) уменьшения размеров островков возможно достичь за счет использования низких температур подложки в процессе осаждения пленки германия (200-300oС). Однако при этом характер морфологии поверхности определяется кинетическими ограничениями, что ухудшает кристаллическое совершенство наноостровков и приводит к существенной неоднородности островков по размерам;
3) и в первом, и во втором случае локализация островков в плоскости границы раздела пленка-подложка носит случайный характер.

Задачей настоящего изобретения является формирование высокоплотных, высокоупорядоченных и совершенных по структуре массивов наноостровков германия на вицинальной поверхности кремния (111).

Поставленная задача достигается за счет того, что нагрев вицинальной поверхности кремниевой подложки производится пропусканием постоянного тока в направлении, перпендикулярном фронту ступеней вицинальной грани кремния.

На фиг. 1 представлено АСМ-изображение топографии структуры с наноостровками германия на поверхности кремния (111), сформированной следующим образом: кремниевая подложка марки КЭС – 0.01 (111), представляющая собой прямоугольную полоску размером 0,3415 мм, с двойной разориентацией от исходной плоскости, помещалась в вакуумную камеру. После достижения рабочего вакуума производилась очистка поверхности кремния от слоя естественных окислов и включений карбида кремния двухминутным отжигом кристалла прямым пропусканием постоянного тока в направлении нижних террас (фиг.2) при температуре 1250oС. При этом направление тока выбиралось таким образом, чтобы не происходило развитие системы эшелонов ступеней, а наоборот, неровности поверхности сглаживались. Далее направление тока менялось на противоположное, и осуществлялся 30-секундный отжиг кристалла при температуре 1220oС с целью формирования ступенчатой структуры подложки. Затем, за счет снижения плотности пропускаемого через образец постоянного тока (уменьшения напряженности электрического поля Е, приложенного к образцу), температура подложки понижалась до 500oС и производилось напыление пленки германия с эффективной толщиной, близкой к 6 ML (0,9 нм) при скорости роста 0,05 нм/с с дальнейшим послеростовым отжигом постоянным током в течение 10 минут. В результате на поверхности формировалась система высокоупорядоченных наноостровков германия, выстроенных строго вдоль фронта наноступеней подложки. Размеры основания островков не превышали 30 нм, плотность расположения островков близка к 11011 см-2.

Эффект упорядочения наноостровков имеет место вследствие того, что:
1) осаждение германия осуществляется на профилированную подложку, представляющую собой систему наноступеней, сформированных в результате отжига кристалла пропусканием постоянного тока в направлении, перпендикулярном фронту ступеней вицинальной грани кремния;
2) в качестве подложек используются вицинальные кристаллы с двойным отклонением от исходной плоскости, отжиг которых приводит к формированию ступеней с пилообразной геометрией фронта. Пилообразные края сформированных ступеней в дальнейшем являются центрами закрепления адатомов германия, образующих наноостровки;
3) для усиления направленного потока адатомов на стадиях напыления пленки и послеростового отжига используется эффект постоянного тока (электромиграции), выстраивающий наноостровки осажденного германия вдоль фронта наноступеней подложки.

Использование предлагаемого способа формирования наноостровков германия на вицинальной поверхности кремния обеспечивает по сравнению с существующими способами следующие преимущества:
1) делает возможным получение пространственно упорядоченных массивов наноостровков высокой плотности;
2) позволяет получать малые по размерам островки при относительно высокой температуре подложки (500oС), что снижает вероятность возникновения дефектов кристаллической структуры в подобных объектах.

Формула изобретения

Способ формирования наноостровков германия на вицинальной поверхности кремния, заключающийся в отжиге в вакууме кремниевой подложки (III) с двойной разориентацией от исходной плоскости и последующем напылении германия, отличающийся тем, что отжиг кремниевой подложки производит путем пропускания постоянного тока перпендикулярно фронту ступеней вицинальной грани кремния в направлении, обеспечивающем сглаживание неровностей поверхности, последующий отжиг кремниевой подложки при изменении направления тока на противоположное для формирования ступенчатой структуры, снижение температуры, напыление германия с последующим послеростовым отжигом постоянным током.

РИСУНКИ

Рисунок 1, Рисунок 2


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 12.02.2004

Извещение опубликовано: 10.10.2005 БИ: 28/2005


Categories: BD_2210000-2210999