Патент на изобретение №2209643
|
||||||||||||||||||||||||||
(54) СПОСОБ ЛУЧЕВОЙ ТЕРАПИИ
(57) Реферат: Изобретение относится к области медицины, а именно к применяемым в онкологии методам лучевой терапии. Технический результат – повышение эффективности облучения пучками фотонов и электронов объекта, которым является опухоль, и уменьшение облучения здоровых тканей за счет уменьшения дозовой нагрузки на ткани. Способ лучевой терапии заключается в облучении объекта, по крайней мере, одним направленным пучком электронов или фотонов в диапазоне энергий от 0,1 до 100 МэВ, изменении распределения дозы ионизирующего излучения в облучаемом объекте путем наложения в области объекта облучения перпендикулярно направлению облучения магнитного поля от 1 до 10 Тл. Может быть использовано как постоянное магнитное поле, так и импульсное магнитное поле длительностью от 0,1 до 1,0 мкс. 2 з.п. ф-лы, 2 ил. Изобретение относится к области медицины, а именно к применяемым в онкологии методам лучевой терапии. При лучевой терапии применяются различные виды ионизирующих излучений. Пучки заряженных частиц и фотонов получают в ускорителях электронов (бетатронах, микротронах, синхротронах), протонов и ионов (синхротронах, фазотронах, изохронных циклотронах). Пучки нейтронов получают либо в результате ядерных реакций под действием протонов и ионов, либо из реакторов. Ускорители электронов дешевле ускорителей тяжелых заряженных частиц (синхротронов, фазотронов) и существенно проще в эксплуатации. Они широко используются в лучевой терапии. На ускорителях электронов получают пучки электронов и тормозных фотонов, используемые в лучевой терапии. Среди различных типов ионизирующих излучений, применяемых в лучевой терапии, использование тяжелых заряженных частиц обладает тем преимуществом, что в распределение дозы наблюдается максимум в конце пробега частиц. Распределение дозы тяжелых заряженных частиц называют “кривой Брэгга”. Ее достоинством по сравнению с распределением дозы от электронов, фотонов и нейтронов – наличие максимума в конце пробега частиц и отсутствие за ним ионизирующих частиц. Это позволяет уберечь здоровые ткани, расположенные за мишенью от действия от ионизирующих излучений и увеличить дозу в области облучаемого объекта (1). Распределение дозы для пучков фотонов и электронов в отличие от распределения дозы для пучков тяжелых заряженных частиц протонов и ионов спадает в зависимости от глубины проникновения. Максимальная доза приходится на области вблизи поверхности тела. При использовании в лучевой терапии электронов, фотонов и нейтронов происходит облучение тканей по всей глубине тела человека вдоль пучка излучения. Чтобы избежать высоких доз на здоровые ткани облучение проводят с разных сторон. При этом происходит облучение большего числа тканей, но они получают меньшую дозу (2). Известен способ лучевой терапии, заключающийся в облучении объекта, направленным пучком фотонов, когда эффективность излучения повышается за счет точности наводки пучка путем контроля и коррекции оси пучка (3). Однако и этот метод не позволяет ликвидировать основные недостатки при облучении электронными и фотонными пучками, а именно сконцентрировать дозу в области объекта облучения и уменьшить облучение здоровых тканей. В предлагаемом изобретении решается задача повышения эффективности облучения пучками фотонов и электронов объекта, которым является опухоль, и уменьшения облучения здоровых тканей за счет уменьшения дозовой нагрузки на ткани, получение для пучков фотонов и электронов распределения дозы в зависимости от глубины аналогичного модулированному пику Брэгга для тяжелых заряженных частиц. Предлагаемый способ лучевой терапии заключается в облучении объекта направленным пучком электронов или фотонов в диапазоне энергий от 0,1 до 100 МэВ, изменении распределения дозы ионизирующего излучения в облучаемом объекте путем наложения в области объекта облучения перпендикулярно направлению облучения магнитного поля от 1 до 10 Тл. Может быть использовано как постоянное магнитное поле, так и импульсное магнитное поле длительностью от 0,1 до 1,0 мкс. Одновременно может производиться облучение несколькими пучками. Изобретение поясняется чертежами, где на фиг.1 представлена схема облучения объекта в магнитном поле; на фиг.2 – зависимость дозы от глубины проникновения в ткань фотонного и электронных пучков. На облучаемый объект 1 (фиг.1), располагаемый в глубине ткани 2, накладывают магнитном поле 3, воздействуют излучением 4, вызывающим появление вторичных электронов 5. Распределение дозы облучения в облучаемом объекте показано на сравнительных кривых (фиг.2), где по оси кривая 6 отражает распределение дозы в относительных единицах от глубины проникновения в ткань в сантиметрах для пучка высокоэнергетических фотонов (22 МэВ) без наложенного магнитного поля, кривая 7 – распределение дозы от глубины проникновения в ткань для пучка электронов (22 МэВ) без наложенного магнитного поля, и кривая 8 – распределение в виде модулированного пика Брэгга. В основе способа лежит влияние магнитного поля на распространение пучков вторичных электронов, возникающих при прохождении через вещество ионизирующего излучения. Вторичные электроны возникают при прохождении через вещество ионизирующих излучений различного типа. При этом важна доля и значение энергии первичной частицы, передаваемая вторичному электрону, а также количество и угловое распределение вторичных электронов, изменение углового распределения в результате многократного рассеяния электронов. Механизмы взаимодействия фотонов с веществом хорошо изучены. К ним относятся: фотоэффект, комптон-эффект, рождение пар, когерентное рассеяние и ядерный фотоэффект. С изменением энергии меняется роль и соотношение вкладов различных механизмов. Действие первых трех механизмов приводит к образованию в конечном состоянии электронов, позитронов и фотонов. Электрон, возникший в результате взаимодействия фотона с веществом, движется в направлении первичного пучка. Если область, где происходит его движение, расположена в магнитном поле, то его траектория будет представлять собой спираль. Вдоль направления распространения первичного пучка в этом случае будет иметь место увеличение дозы. Для пучка электронов увеличение дозы будет иметь место по области мишени. Область наложения магнитного поля и облучаемая область ткани можно расположить так, что область увеличения дозы охватит всю область мишени. Размер увеличения дозы будет зависеть от энергии образовавшегося электрона и величины и распределения (в зависимости от глубины проникновения пучка) магнитного поля. Здесь еще на увеличение дозы накладывается доля от поворота первичного электронного пучка. Исследование распределения энергии, поглощенной веществом в результате комптоновского взаимодействия с ним электронов и фотонов показывает, что при энергии фотонов 1 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() 1. F. M. Khan. The physics of radiation therapy. Baltimore, Maryland, USA. 1992. 2. Авторское свидетельство 284246, МПК A 61 N 5/10, опубл. 14.10.70 3. Авторское свидетельство 3231039, МПК А 61 N 5/10, опубл. 29.05.73т Формула изобретения 1. Способ лучевой терапии, заключающийся в облучении объекта направленным пучком электронов или фотонов, отличающийся тем, что облучение проводят, по крайней мере, одним пучком электронов или фотонов в диапазоне энергий от 0,1 до 100 МэВ, проводят изменение распределения дозы ионизирующего излучения в облучаемом объекте путем наложения в области объекта облучения перпендикулярно направлению облучения магнитного поля от 1 до 10 Тл. 2. Способ по п.1, отличающийся тем, что перпендикулярно направлению облучения накладывают постоянное магнитное поле. 3. Способ по п.1, отличающийся тем, что перпендикулярно направлению облучения накладывают импульсное магнитное поле длительностью от 0,1 до 1,0 мкс. РИСУНКИ
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 30.01.2007
Извещение опубликовано: 20.01.2008 БИ: 02/2008
|
||||||||||||||||||||||||||