Патент на изобретение №2208908

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2208908 (13) C1
(51) МПК 7
H03M13/25
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 08.04.2013 – прекратил действиеПошлина:

(21), (22) Заявка: 2002119250/09, 16.07.2002

(24) Дата начала отсчета срока действия патента:

16.07.2002

(45) Опубликовано: 20.07.2003

(56) Список документов, цитированных в отчете о
поиске:
US 6330277 А, 11.12.2001. RU 2015621 С1, 30.06.1994. US 5029331, 02.07.1991. US 5383219, 17.01.1995. JP 2002135850, 10.05.2002.

Адрес для переписки:

194064, Санкт-Петербург, Тихорецкий пр-т, 3, Военный университет связи, Бюро по изобретательству

(71) Заявитель(и):

Военный университет связи

(72) Автор(ы):

Бережной С.Л.,
Путилин А.Н.,
Смирнов Д.И.,
Хилько В.О.

(73) Патентообладатель(и):

Военный университет связи

(54) СПОСОБ ФОРМИРОВАНИЯ СИГНАЛЬНО-КОДОВОЙ КОНСТРУКЦИИ


(57) Реферат:

Изобретение относится к электросвязи. Технический результат заключается в расширении области применения способа формирования сигнально-кодовой конструкции (СКК). В способе при расчете конечной скорости помехоустойчивого кода учитываются кратности манипуляции всех частотных подканалов, что позволяет добиться внесения такого количества избыточности, которое обеспечивает постоянство заданного объема передаваемой информации в единицу времени и, таким образом, расширяет область применения способа как для синхронных, так и для асинхронных систем передачи. 6 ил.


Изобретение относится к электросвязи, а именно к способам передачи дискретной информации, в частности к способам формирования сигнально-кодовых конструкций (СКК). Способ может быть использован для передачи информации от синхронных источников нагрузки по каналам радиосвязи декаметрового диапазона, а также по другим каналам с нестационарными параметрами.

Заявленное техническое решение расширяет арсенал средств аналогичного назначения.

Известен способ формирования СКК (см., например, патент США 5396518, 1995г.), в котором от источника сообщений принимают информационный блок символов, демультиплексируют его на два потока, один из которых кодируют помехоустойчивым кодом и перфорируют. Далее оба потока преобразуют из последовательного вида к параллельному и кодируют манипуляционным кодом, а затем формируют манипулированные сигналы и передают их в канал связи.

Недостатком данного способа является избыточность сформированной им СКК, что обусловлено необходимостью применения мощных помехоустойчивых кодов и простейших методов манипуляции для обеспечения заданного качества передачи информации. Такой способ формирования СКК при использовании его на каналах с нестационарными параметрами приводит к снижению пропускной способности системы передачи.

Также известен способ формирования СКК (см. , например, патент США 5457705, 1995г.), в котором от источника сообщений принимают информационный блок символов, преобразуют его из последовательного вида к параллельному. Затем кодируют его помехоустойчивым кодом. Далее кодированный блок символов перфорируют и кодируют манипуляционным кодом, после чего формируют манипулированные сигналы и передают их в канал связи.

Недостатком данного способа также является избыточность сформированной им СКК, что обусловлено необходимостью применения мощных помехоустойчивых кодов и простейших методов манипуляции для обеспечения заданного качества передачи информации. Такой способ формирования СКК при использовании его на каналах с нестационарными параметрами тоже приводит к снижению пропускной способности системы передачи.

Наиболее близким по технической сущности к заявленному является способ формирования СКК (см., например, патент США 6330277, 2001г.), в котором от источника сообщений принимают информационный блок символов и кодируют его помехоустойчивым кодом с исходной скоростью. Одновременно с этим формируют тестовые сигналы в частотных подканалах, которые передают в канал связи, а на приемной стороне канала связи по ним оценивают качество работы подканалов. Полученные данные о качестве работы подканалов по каналу обратной связи передают на передающую сторону канала связи, где по ним для каждого частотного подканала определяют кратность манипуляции и рассчитывают конечную скорость кода. Затем перфорируют избыточные проверочные символы в кодированном блоке символов, после чего его перемежают. Далее формируют манипулированные сигналы в частотных подканалах и объединяют их в групповой сигнал, который передают в канал связи. На приемной стороне его принимают и детектируют в каждом частотном подканале, а затем деперемежают, после чего блок символов деперфорируют, а затем декодируют и передают в нагрузку. Известный способ-прототип обеспечивает в сравнении с рассмотренными выше аналогами некоторое снижение избыточности благодаря адаптивному изменению параметров СКК, таких как кратность манипуляции в частотных подканалах, а также скорость помехоустойчивого кода.

Недостаток прототипа заключается в узкой области его применения. Это объясняется широким диапазоном изменения избыточности сформированной им СКК и скорости передачи информации в канале, обусловленных большими вариациями параметров канала связи, что приводит в конечном итоге к высокой вероятности нарушения связи и делает способ-прототип неприемлемым для синхронных систем передачи, требующих постоянства объема информации, передаваемой в единицу времени.

Целью изобретения является разработка способа формирования СКК, расширяющего область его применения как для синхронных, так и для асинхронных систем передачи.

Поставленная цель достигается тем, что в известном способе формирования СКК, заключающемся в том, что от источника сообщений принимают со скоростью Vист информационный блок символов, кодируют его помехоустойчивым кодом с исходной скоростью Rиcx, формируют тестовые сигналы в К частотных подканалах, где 6К48, которые передают в канал связи, а на приемной стороне канала связи по ним оценивают качество работы подканалов, полученные данные о качестве работы подканалов по каналу обратной связи передают на передающую сторону канала связи, где по ним для каждого i-го частотного подканала определяют кратность манипуляции Мi, где i= 1, 2, …, К, рассчитывают конечную скорость кода Rкон, перфорируют избыточные проверочные символы в кодированном блоке символов, после чего его перемежают, формируют манипулированные сигналы в К частотных подканалах на единичном интервале с длительностью tuнm, формируют групповой сигнал, который передают в канал связи, принимают его на приемной стороне и детектируют в каждом частотном подканале, а затем деперемежают, после чего блок символов деперфорируют, а затем декодируют и передают в нагрузку, предварительно рассчитывают минимально допустимое для передачи в канале количество символов Nmin за один единичный интервал tинт по формуле Nmin=Vистtинт. После определения кратностей манипуляции Мi для всех подканалов их суммируют, а из полученной суммы N вычитают значение Nmin. При положительной разности конечную скорость кода Rкон рассчитывают по формуле Rкон=Nmin/N, а при отрицательной разности качество канала признается неудовлетворительным.

Для оценки качества всех частотных подканалов измеряют в каждом подканале на приемной стороне канала связи соотношение сигнал/помеха.

Кратность манипуляции Мi в i-ом частотном подканале определяют в соответствии с предварительно рассчитанной таблицей зависимостей значений кратности манипуляции от качества работы частотного подканала для выбранного режима работы.

Длительность tuнm единичного интервала выбирают в интервале 220 мс.

Благодаря новой совокупности существенных признаков в заявленном способе при расчете конечной скорости помехоустойчивого кода учитываются кратности манипуляции всех частотных подканалов, что позволяет добиться внесения такого количества избыточности, которое обеспечивает постоянство заданного объема информации в единицу времени и, таким образом, расширяет область применения заявленного способа как для синхронных, так и для асинхронных систем передачи.

Проведенный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют, что указывает на соответствие заявленного способа условию патентоспособности “новизна”. Результаты поиска известных решений в данной и смежной областях техники с целью выявления признаков, совпадающих с отличными от прототипа признаками заявленного объекта, показали, что они не следуют явным образом из уровня техники. Из уровня техники также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на достижение указанного технического результата. Следовательно, заявленное изобретение соответствует условию патентоспособности “изобретательский уровень”.

Заявленный способ поясняется чертежами:
фиг.1 – функциональная схема системы передачи;
фиг. 2 – диаграмма, иллюстрирующая процесс передачи и приема тестовых сигналов;
фиг. 3 – диаграмма, иллюстрирующая процесс прохождения информации в тракте передачи;
фиг. 4 – таблица зависимостей значений кратности манипуляции от качества работы частотного подканала;
фиг. 5 – диаграмма, иллюстрирующая процесс прохождения информации в тракте приема;
фиг. 6 – графики зависимости скорости передачи информации от пропускной способности канала связи.

Заявленный способ может быть реализован следующим образом.

Известные подходы к реализации способов формирования СКК (см., например, Прокис Дж. “Цифровая связь” М.: Радио и связь, 2000, стр. 319-322 или Григорьев В. А. “Передача сигналов в зарубежных информационно-технических системах” С-Пб.: ВАС, 1995, стр.10-13) включают в себя действия, присущие описанным выше аналогам. Система передачи в общем виде включает передающую и приемную стороны (фиг.1), соединенные каналом связи. Параметры СКК в такой системе устанавливают единовременно на весь период ее функционирования, исходя из наихудших условий работы канала связи. Достижение максимальной пропускной способности при этом возможно только на каналах с постоянными параметрами (стационарных каналах).

Большинство реальных каналов связи относится к числу нестационарных, состояние и качество которых меняется во времени. Типичным примером нестационарного канала является коротковолновый радиоканал с использованием ионосферного распространения электромагнитных волн.

Для повышения помехоустойчивости при работе в каналах с нестационарными параметрами в системе передачи дискретной информации применяют частотное разнесение, при котором манипулированные сигналы могут передаваться в К частотных подканалах. Количество используемых подканалов определяется общей полосой рабочих частот F, выделенной для работы канала связи, и длительностью единичного интервала сигнала tинт. Исходя из того, что длительность единичного интервала задается проектировщиком из соображений достаточности мощности сигнала, то полоса частот подканала f и число подканалов К определяются соответственно выражениями (см. , например, “Военно-технические основы построения средств и комплексов связи” / Под. ред. А.А. Колесникова Л.: ВАС, 1977г., с.65):


Соответственно, скорость передачи информационных символов Vист, которую можно обеспечить по каналу с заданной достоверностью, рассчитывают как:

R – скорость помехоустойчивого кода;
Мi– кратность манипуляции в i-ом подканале, где i=1K.

Например, значение длительности единичного интервала для сигналов ФМ выбирают из диапазона 220 мс (см. , например, Петрович Н.Т. “Передача дискретной информации в каналах с фазовой манипуляцией”. М.: Советское радио, 1965 г., 262 с.). Следовательно, ширина полосы частот каждого подканала может занимать соответственно 500 – 50 Гц. Если учесть, что усредненная по всем подканалам кратность манипуляции М равна 2, а скорость помехоустойчивого кода Rкон равна 1/2, то можно прийти к выводу, что при полосе рабочих частот, равной эффективно передаваемой полосе частот канала тональной частоты 3100 Гц, количество подканалов К, необходимое для обеспечения требуемой скорости передачи сообщений Vист, равной 1200 бит/с, будет лежать в диапазоне 648.

В адаптивных системах возникает необходимость контроля качества каналов. Чаще всего контроль осуществляют на приемной стороне и информацию о результатах контроля посылают по каналу обратной связи (пунктирная линия на фиг.1) на передающую сторону. На основании этой информации возможно внесение тех или иных изменений в процесс передачи сообщения: увеличение или уменьшение кратности манипуляции, внесение или исключение избыточности посредством помехоустойчивого кодирования и перфорации.

Однако изменение параметров канала передачи может происходить в довольно широком диапазоне значений и приводить к таким же глобальным изменениям параметров СКК, ведущим к флуктуациям скорости передачи информации.

Из литературы (см. , например, Григорьев В.А. “Передача сигналов в зарубежных информационно-технических системах” С-Пб.: ВАС, 1995, стр.10-13) известно, что передача синхронных видов нагрузки, таких как, например, речевой или видеосигналы, требует поддержания скорости передачи информации постоянной. Следовательно, передача синхронных видов нагрузки в таких системах может оказаться малоэффективной и ненадежной.

Таким образом, возникает противоречие между необходимостью формирования структуры СКК, при которой в канал связи передается одинаковый объем информации в единицу времени и возможными флуктуациями параметров канала, требующими изменения этого объема.

На разрешение данного противоречия и направлен заявленный способ, который поясняется следующим образом.

Информационный блок символов (фиг.3 а), состоящий из m знаков, где m= 1,2,3. . . , принимают от источника сообщений со скоростью передачи Vист. Каждый знак состоит из k двоичных символов, где k=1,2,3… (фиг.3а).

Известно (см. , например, Финк Л.М. “Теория передачи дискретных сообщений” М. : Советское радио, 1970, стр. 82-89), что для достижения требуемой достоверности, передаваемой по каналу цифровой информации, используют помехоустойчивое кодирование. В заявленном способе для этого выполняют избыточное кодирование, заключающееся в добавлении к каждому знаку из k символов дополнительных г проверочных символов (фиг.3 б). Количество проверочных символов выбирают из условия достижения исправляющей способности кода для наихудшего качества канала связи (см., например, “Элементы теории передачи дискретной информации”/Под ред. Л.П. Пуртова, М.: Связь, 1972, стр.140-143), при этом исходная скорость кода определяется выражением:

Реальные параметры канала связи непрерывно изменяются. В этих условиях число проверочных символов может оказаться избыточным для достижения требуемой достоверности передаваемой информации, что приведет к неоправданному снижению скорости передачи информации.

Исключить это можно операцией выкалывания (перфорацией) лишних проверочных символов (см. , например, Григорьев В.А. “Передача сигналов в зарубежных информационно-технических системах” С-Пб.: ВАС, 1995, стр.52). Причем число выкалываемых символов должно соотноситься с параметрами канала связи.

Для этой цели в заявленном способе предварительно определяют параметры качества канала связи, например, путем оценки соотношения уровней сигнал/помеха на приемной стороне канала связи. Для этого на передающей стороне в каждом из частотных подканалов генерируют тестовые сигналы (фиг.2 а), из которых формируют групповой сигнал, передаваемый затем по каналу связи. Групповой сигнал, принятый на приемной стороне, расфильтровывают и измеряют для каждого подканала соотношение сигнал/помеха (фиг.2 б).

Известно (см. , например, Финк Л.М. “Теория передачи дискретных сообщений” М. : Советское радио, 1970, стр. 604, рис. 9.10), что при определенном уровне сигнал/помеха для достижения требуемой достоверности передачи СКК необходимо выбрать соответствующую ему кратность манипуляции. Например, при использовании фазовой манипуляции уровни сигнал/помеха и соответствующие им значения кратностей манипуляции приведены в таблице на фиг.4. С использованием приведенных в таблице на фиг.4 данных для каждого i-го подканала, где i=1,2,…, К, определяют необходимую кратность манипуляции Mi.

Известно, что в системах синхронной связи для обеспечения ее надежности необходимо поддерживать постоянство объема передаваемой в канал информации в единицу времени на протяжении всего сеанса связи. Для этого, прежде всего, требуется определить величину этого объема. С этой целью в заявленном способе предварительно рассчитывают количество информационных символов Nmin, минимально допустимое для передачи в канале за один единичный интервал tинт, по формуле:
Nmin=Vистtинт. (5)
Величина Nmin характеризует минимально допустимую пропускную способность канала связи, требуемую для обеспечения передачи информации со скоростью Vист.

После этого необходимо определить реальную (фактическую) пропускную способность канала связи, обусловленную его качеством, и сделать вывод о достаточности или недостаточности этой пропускной способности для передачи требуемого объема информации.

С этой целью для вычисления реальной пропускной способности N канала связи суммируют предварительно определенные значения кратностей манипуляции Мi всех частотных подканалов, которые, в свою очередь, равны пропускным способностям этих подканалов.

Очевидно, что для выполнения условия достаточности необходимо, чтобы реальная пропускная способность N канала связи превосходила минимально допустимую пропускную способность канала связи или другими словами, чтобы выполнялось неравенство:
= N-Nmin0. (6)
Величина определяет запас по пропускной способности, который используется для введения избыточности в сообщение на этапе помехоустойчивого кодирования.

Однако количество избыточности, введенное в процессе кодирования с исходной скоростью Rиcx может оказаться больше, чем допустимое количество избыточности, определяемое величиной , что может привести к уменьшению доли информации, передаваемой в канал ниже величины Nmin, а следовательно, и к нарушению связи. Для предотвращения этого необходимо снизить количество избыточности, т. е. увеличить скорость помехоустойчивого кода. Увеличение скорости помехоустойчивого кода можно осуществить путем перфорации “лишних” проверочных символов. При этом значение конечной скорости кода Rкон будет определяться выражением:

В том случае, если запаса по пропускной способности не окажется, т.е. величина будет меньше 0, то передача информации со скоростью Vист окажется невозможной. Канал связи неработоспособен для заданных условий.

Далее для достижения более высокой достоверности передаваемой информации в заявленном способе выполняют операцию перемежения символов, что делает возникающие ошибки статистически независимыми (см. , например, Прокис Дж. “Цифровая связь” М.: Радио и связь, 2000, стр. 400-402).

Принцип перемежения поясняется на фиг.3 в, 3 г. Блоки выходных символов формируют из символов входных блоков, имеющих одинаковые индексы (фиг.3 г). Например, первый блок выходных символов формируется из первых символов первого и последующих блоков, второй – из вторых и т.д.

После этого для каждого подканала формируют манипулированные сигналы (фиг. 3 д) путем преобразования двоичного символа в гармонический сигнал для согласования с непрерывным каналом связи.

Далее формируют групповой сигнал (фиг.3 д) в рабочей полосе частот канала передачи путем линейного сложения манипулированных сигналов частотных подканалов, который передают в канал связи. Передача перфорированного блока символов может осуществляться на z единичных интервалах tинт, как показано на фиг. 3д. Значение z прямо пропорционально длине перфорированного блока и обратно пропорционально количеству частотных подканалов и установленным для этих подканалов кратностям манипуляции. Например, для передачи перфорированного блока длиной 40 символов по 20 подканалам, в каждом из которых кратность манипуляции равна 2, будет необходим 1 единичный интервал, т.е. z будет равна 1.

На приемной стороне канала (фиг.5) принимают групповой сигнал (фиг.5 а) и детектируют его во всех частотных подканалах (фиг.5 б).

После этого принятые символы деперемежают (фиг.5 б, 5 в). Операция деперемежения является обратной по отношению к перемежению и заключается в восстановлении первоначального порядка следования символов.

Далее деперфорируют кодированный блок символов (фиг.5 в), т.е. в принятом блоке обозначают перфорированные разряды, вставив на их место случайные символы (например, нули) (см., например, Григорьев В.А. “Передача сигналов в зарубежных информационно-технических системах” С-Пб.: ВАС, 1995, стр.52).

После этого декодируют (фиг.5 г) деперфорированный блок с целью восстановления по проверочным символам информационных символов, искаженных помехой. Декодирование кодов, полученных перфорацией исходного кода, выполняют на исходной скорости Rисх Полученный информационный блок символов передают в нагрузку.

Возможность получения указанного технического результата можно продемонстрировать при помощи сравнительной характеристики зависимости информационной скорости в канале передачи от его пропускной способности. Пусть скорость передачи источника сообщений составляет Vист=1200 бит/с, исходная скорость кода Rиcx равна 1/2, значения кратности манипуляции в частотных подканалах принимают значения “1”, “2”,”3″, длительность единичного интервала равна tинт равна 20 мс, а количество частотных подканалов К равно 48. Минимальное допустимое количество символов, передаваемых за один единичный интервал, обеспечивающее скорость Vист, будет равно 24, а за одну секунду – 1200.

Зависимости скорости передачи информации от пропускной способности канала, т.е. от его качества, для прототипа и заявленного способа получены в результате имитационного моделирования и представлены на фиг.6. Анализ данных зависимостей показывает, что изменение пропускной способности канала вызывает изменение скорости передачи информации в прототипе, в то время как скорость передачи информации в системе, работающей по заявленному способу, остается постоянной, что обеспечивает надежную работу каналов связи с использованием как синхронной, так и асинхронной нагрузки, т.е. расширяет область применения заявленного способа.

Формула изобретения


1. Способ формирования сигнально-кодовой конструкции, заключающийся в том, что от источника сообщений принимают со скоростью Vист информационный блок символов, кодируют его помехоустойчивым кодом с исходной скоростью, формируют тестовые сигналы в К частотных подканалах, где 6К48, которые передают в канал связи, а на приемной стороне канала связи по ним оценивают качество работы подканалов, полученные данные о качестве работы подканалов по каналу обратной связи передают на передающую сторону канала связи, где по ним для каждого i-го частотного подканала определяют кратность манипуляции Мi, где i=1, 2,…,К, рассчитывают конечную скорость кода Rкон перфорируют избыточные проверочные символы в кодированном блоке символов, после чего его перемежают, формируют манипулированные сигналы в К частотных подканалах на единичном интервале с длительностью tинт, формируют групповой сигнал, который передают в канал связи, принимают его на приемной стороне и детектируют в каждом частотном подканале, а затем полученный после детектирования блок символов деперемежают, деперфорируют, после чего, декодируют и передают в нагрузку, отличающийся тем, что для расчета конечной скорости кода Rкон предварительно рассчитывают минимально допустимое для передачи в канале количество символов Nmin за один единичный интервал tинт по формуле Nmin= Vиcтtинт, а после определения кратностей манипуляции Мi для всех подканалов их суммируют, а из полученной суммы N вычитают значение Nmin и при положительной разности конечную скорость кода Rкон рассчитывают по формуле Rкон= Nmin/N, а при отрицательной – качество канала признается неудовлетворительным.

2. Способ по п.1, отличающийся тем, что для оценки качества всех частотных подканалов измеряют в каждом подканале на приемной стороне канала связи соотношение сигнал/помеха.

3. Способ по п.1 или 2, отличающийся тем, что кратность манипуляции Mi в i-м частотном подканале определяют в соответствии с предварительно рассчитанной таблицей зависимостей значений кратности манипуляции от качества работы частотного подканала для выбранного режима работы.

4. Способ по любому из пп.1 – 3, отличающийся тем, что длительность tинт единичного интервала выбирают в интервале 220 мс.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 17.07.2004

Извещение опубликовано: 20.04.2006 БИ: 11/2006


Categories: BD_2208000-2208999