Патент на изобретение №2208871
|
||||||||||||||||||||||||||
(54) ПЛАЗМЕННЫЙ ИСТОЧНИК ЭЛЕКТРОНОВ
(57) Реферат: Изобретение относится к области газоразрядных высоковакуумных (Р<0,1 Па) устройств. Техническим результатом является повышение эффективности извлечения электронного пучка, а также газовой и энергетической эффективности. Плазменный источник электронов содержит выполненные в виде тел вращения с центральными отверстиями внутренний и внешний полюсные наконечники с расположенным между ними источником магнитодвижущей силы и размещенные в герметичном корпусе дуговой диафрагмированный полый катод с устройством подачи газа, а также установленные между соосными выходными отверстиями катода и корпуса соосно с ними выполненные в виде тел вращения с центральными отверстиями промежуточный и главный аноды. Между выходными отверстиями катода и корпуса последовательно установлены промежуточный анод, внутренний полюсный наконечник, кольцевой коллектор, главный анод и внешний полюсный наконечник. Главный анод выполнен из магнитослабого материала и расположен так, что через отверстие в нем протекает не менее 30% создаваемого в пространстве между полюсными наконечниками магнитного потока. Внутренний и внешний полюсные наконечники электрически соединены с катодом. В общем случае плазменный источник снабжен кольцевым коллектором, соединенным с дополнительным устройством подачи газа. В кольцевом коллекторе выполнены отверстия, обеспечивающие подачу газа в пространство между полюсными наконечниками. 7 з.п.ф-лы, 2 ил. Изобретение относится к области газоразрядных высоковакуумных (Р<0,1 Па) устройств и предназначено для работы в качестве катода мощных генераторных ламп (например, катод генератора СВЧ-колебаний), а также в составе источников ионных пучков, в частности, в составе таких космических электроракетных двигателей, как плазменно-ионный двигатель (ПИД) (катод – нейтрализатор ПИД). Известен катодный блок, содержащий заключенные в герметичный корпус дуговой диафрагмированный полый катод с устройством подачи газа и промежуточный анод [1]. Дуговой разряд между таким катодом и каким-либо внешним анодом (при работе катода в составе ПИД внешним анодом является плазма ионного пучка) зажигается при прокачке через полость катода постоянного расхода рабочего тела (инертные газы, пары ртути, цезия). Высокий ресурс и низкий уровень энергозатрат предопределили использование данного устройства в качестве традиционного и практически единственного типа источника электронов для Холловского двигателя (СПД) и ПИД. Вместе с тем, применение подобного катодного блока в составе Холловского двигателя (СПД) существенно ограничивает возможности повышения полного тягового КПД двигателя. Внутренняя противоречивость процессов генерации заряженных частиц в прикатодной области разряда приводит к неблагоприятному распределению потенциала в пространстве анод – катод, непроизводительному повышению уровня энергозатрат и к неоправданно большому расходу рабочего тела через полость катода. Указанные недостатки, обусловленные низкой эффективностью ионизации нейтральных атомов в столбе разряда при малых расходах и низкой температуре электронов, снижают конкурентноспособность Холловского двигателя (СПД), наиболее ярко проявляясь в перспективной области малых тяг (F<30 mN). Аналогичные недостатки, хоть и в меньшей мере, присущи и катоду-нейтрализатору ПИД. Низкий уровень энергозатрат в сочетании с возможностью получения стационарного электронного пучка со значительными токами (I>1А) и высокими плотностями тока привлекают внимание к перспективам использования дугового диафрагмированного полого катода в мощных генераторах электромагнитных колебаний различных типов. Известен плазменный источник электронов (ПИЭЛ) на основе обращенного дуоплазматрона с дуговым полым катодом [2]. Такой источник содержит заключенные в герметичный корпус дуговой диафрагмированный полый катод с устройством подачи газа и установленные между выходными отверстиями катода и корпуса соосно с ними промежуточный и главный кольцевые аноды, а также внутренний и внешний кольцевые полюсные наконечники с расположенным между ними источником магнитодвижущей силы. Конструктивно внешний полюсный наконечник совмещен с главным анодом, а внутренний полюсный наконечник совмещен с промежуточным анодом. Таким образом, полюсные наконечники находятся под потенциалами совмещенных с ними анодов. Разряд в данном источнике контрагирован отверстием в промежуточном аноде и сильным неоднородным магнитным полем в пространстве между анодами, где и достигается максимальная степень ионизации газа. Извлечение электронов из образовавшейся плазмы производится через отверстие в главном аноде с помощью системы внешних электродов. Подобный ПИЭЛ позволяет получить стационарный электронный пучок со значительными токами (I>1A) и высокими плотностями тока. Минимальный расход газа в рассматриваемом ПИЭЛ меньше расхода в традиционном катодном блоке, однако высокий уровень удельных энергозатрат (порядка 1 кВт/А) и низкая эффективность извлечения электронного пучка исключают возможность его применения в качестве катода-компенсатора Холловского двигателя (СПД) и катода-нейтрализатора ПИД, а также ограничивают его применимость в генераторных лампах. Задачей, на которую направлено изобретение, является повышение эффективности извлечения электронного пучка, а также газовой и энергетической эффективности. Поставленная задача решается за счет того, что в плазменном источнике электронов, содержащем выполненные в виде тел вращения с центральными отверстиями внутренний и внешний полюсные наконечники с расположенным между ними источником магнитодвижущей силы, а также размещенные в герметичном корпусе дуговой диафрагмированный полый катод с устройством подачи газа и выполненные в виде тел вращения с центральными отверстиями промежуточный и главный аноды, между выходными отверстиями катода и корпуса соосно с ними последовательно установлены промежуточный анод, внутренний полюсный наконечник, главный анод и внешний полюсный наконечник. Главный анод выполнен из магнитослабого материала и расположен так, что через отверстие в нем протекает не менее 30% создаваемого в пространстве между полюсными наконечниками магнитного потока. Внутренний и внешний полюсные наконечники электрически соединены с катодом и имеют потенциал, практически равный потенциалу катода. В общем случае плазменный источник снабжен кольцевым коллектором, соединенным с дополнительным устройством подачи газа. В кольцевом коллекторе выполнены отверстия, обеспечивающие подачу газа в пространство между полюсными наконечниками за пределы зоны, находящейся между указанными полюсными наконечниками и ограниченной торцевыми поверхностями полюсных наконечников и внутренней поверхностью анода. Изобретение поясняется чертежами, где на фигурах 1, 2 представлены варианты выполнения ПИЭЛ. Предлагаемый ПИЭЛ, выполняющий функции катода газоразрядного устройства, содержит дуговой диафрагмированный полый катод (1) с устройством подачи газа (2), размещенный в герметичном корпусе (3) (фиг.1) (26) (27) (фиг.2) так, что оси выходных отверстий катода (4) и корпуса (5) совпадают. Между выходными отверстиями дугового полого катода (4) и корпуса (5) соосно с ними последовательно установлены кольцевые промежуточный анод (6), внутренний полюсный наконечник (7), кольцевой коллектор (8) с дополнительным устройством подачи газа (28), главный анод (9) (23) и внешний полюсный наконечник (10). (В специальных вариантах конструкции предлагаемого ПИЭЛ кольцевой коллектор с дополнительным устройством подачи газа могут отсутствовать.) Внутренний (7) и внешний (10) полюсные наконечники электрически соединены (накоротко или путем замыкания тока через плазму газового разряда) с катодом (1), находясь практически под одним потенциалом с последним. Главный анод (9) (фиг. 1) может быть выполнен в виде полого цилиндра, внутренний диаметр D4 (12) и длина L2 которого превышают минимальный диаметр D3 отверстия (14) во внешнем полюсном наконечнике (10) в 1-1,6 раза. Другой вариант выполнения главного анода (23) (фиг.2) – в виде полого усеченного конуса, меньшее основание которого обращено к внутреннему полюсному наконечнику (7). В этом случае внутренний диаметр большего основания (24) D6 и высота усеченного конуса Н относятся к минимальному диаметру D3 отверстия (14) во внешнем полюсном наконечнике (10) как D6: D3=1,3 ![]() ![]() ![]() ![]() ![]() 1) существенно снизить энергозатраты и, соответственно, тепловыделение в катодной области разряда; 2) получить высокие значения тока и плотности тока стационарного электронного пучка; 3) значительно увеличить эффективность извлечения электронного пучка и энергетическую эффективность; 4) повысить управляемость и устойчивость разряда при низком уровне давления (Р<0,01 Па) в пространстве распостранения электронного пучка. Применение предложенного плазменного источника электронов в качестве составной части (катода-нейтрализатора) ПИД позволяет: 1) повысить тяговый КПД двигателя в результате создания катодом-нейтрализатором дополнительной тяги при уменьшении потерь энергии и расхода газа; 2) повысить ресурс ускоряющего электрода ионно-оптической системы за счет снижения разности потенциалов между ускоряющим электродом и плазмой пространства нейтрализации ионного пучка; 3) повысить управляемость и устойчивость разряда при низком уровне давления (Р<0,01 Па) в пространстве распостранения ионно-электронных пучков, создаваемых электроракетным двигателем и плазменным источником электронов. Использование предложенного плазменного источника электронов в качестве составной части (катода-компенсатора) Холловского двигателя (СПД) позволяет: 1) увеличить тягу и тяговый КПД двигателя за счет сокращения непроизводительных потерь энергии в пространстве – катод плазменного источника электронов – анод Холловского двигателя (СПД); 2) повысить тягу и тяговый КПД двигателя в результате создания плазменным источником электронов дополнительной тяги при уменьшении расхода газа; 3) эффективно управлять величиной плавающего потенциала катода-компенсатора и распределением потенциалов в пространстве взаимодействия пучков, создаваемых анодом Холловского двигателя (СПД) и плазменным источником электронов; 4) повысить управляемость и устойчивость разряда при низком уровне давления (Р<0,01 Па) в пространстве взаимодействия ионно-электронных пучков, создаваемых Холловским двигателем (СПД) и плазменным источником электронов; 5) повысить ресурс Холловского двигателя за счет изменения местоположения и протяженности зоны генерации и ускорения ионов. Таким образом, с помощью предложенного плазменного источника электронов решена самосогласованная задача эффективной организации разряда требуемых параметров в различных газоразрядных устройствах при низком уровне расхода газа, малых энергозатратах и высоком КПД. Решение задачи привело к возникновению таких новых свойств, как получение дополнительной тяги и повышение ресурса при работе в составе электроракетных двигателей, а также возможности эффективного управления величиной плавающего потенциала катода-компенсатора и распределением потенциала в пространстве взаимодействия ионно-электронных пучков, создаваемых электроракетным двигателем и плазменным источником электронов. Литература 1. А.Т. Форрестер. Интенсивные ионные пучки. Москва. Мир. 1992. с.191. 2. A.S. Roberts, Jr., James L. Cox, Jr. and Willard N. Bennett. Electron Beams from a Duoplasmatron using a Hollow Cathode Arc as Electron Source. J. Appl. Phys. V. 37, N8 (1966), p.3231. 3. Ю. Е. Крейндель. Плазменные источники электронов. Москва. Атомиздат. 1977 г., с.53, 54. Формула изобретения 1. Плазменный источник электронов, выполняющий функции катода газоразрядного устройства, содержащий выполненные в виде тел вращения с центральными отверстиями внутренний и внешний полюсные наконечники с расположенным между ними источником магнитодвижущей силы и размещенные в герметичном корпусе дуговой диафрагмированный полый катод с устройством подачи газа, а также установленные между соосными выходными отверстиями катода и корпуса выполненные в виде тел вращения с центральными отверстиями промежуточный и главный аноды, отличающийся тем, что между выходными отверстиями катода и корпуса соосно с ними последовательно установлены промежуточный анод, внутренний полюсный наконечник, главный анод и внешний полюсный наконечник, главный анод выполнен из магнитослабого материала и расположен так, что через отверстие в нем протекает не менее 30% создаваемого в пространстве между полюсными наконечниками магнитного потока, а внутренний и внешний полюсные наконечники электрически соединены с катодом. 2. Источник электронов по п.1, отличающийся тем, что он снабжен кольцевым коллектором, соединенным с дополнительным устройством подачи газа, в коллекторе выполнены отверстия, обеспечивающие подачу газа в пространство между полюсными наконечниками. 3. Источник электронов по п.1 или 2, отличающийся тем, что минимальные диаметры отверстий в катоде d, промежуточном аноде D1, внутреннем полюсном наконечнике D2 и внешнем полюсном наконечнике D3 связаны соотношением d:D1: D2: D3= 1: 10k: 50k: 100k, где k=1 ![]() ![]() ![]() ![]() ![]() ![]() ![]() РИСУНКИ
|
||||||||||||||||||||||||||