Патент на изобретение №2208809
|
||||||||||||||||||||||||||
(54) СПОСОБ ОДНОЧАСТОТНОГО ОПРЕДЕЛЕНИЯ ЗАДЕРЖКИ СИГНАЛОВ НАВИГАЦИОННОЙ СПУТНИКОВОЙ СИСТЕМЫ В ИОНОСФЕРЕ
(57) Реферат: Изобретение относится к области спутниковой навигации и может быть использовано для определения ионосферной задержки распространения сигналов глобальных навигационных спутниковых систем с помощью навигационной аппаратуры потребителей глобальной навигационной спутниковой системы, работающей на одной частоте. В предлагаемом способе определение задержки сигналов в ионосфере производится путем решения системы уравнений, составленной по разностям приращений псевдодальностей, измеренных по дальномерному коду и по фазе несущей частоты для каждого навигационного космического аппарата. Достигаемым техническим результатом изобретения является упрощение способа оценки задержки сигналов в ионосфере, а также повышение его быстродействия. 1 ил. Изобретение относится к области спутниковой навигации и может быть использовано для определения ионосферной задержки распространения сигналов глобальных навигационных спутниковых систем (ГНСС) с помощью навигационной аппаратуры потребителей (НАП) ГНСС, работающей на одной частоте. Известен способ определения задержки сигналов ГНСС в ионосфере на одной частоте [1, С. 125-128], основанный на применении упрощенной модели ионосферы. Исходными данными для расчета ионосферных поправок являются приближенные значения координат НАП ГНСС, угол места, азимут навигационных космических аппаратов (НКА), время и коэффициенты модели. Коэффициенты модели передаются в навигационном сообщении системы GPS и обновляются каждые 6 дней [1, С.114]. Недостатком данного способа является, низкая точность определения задержки сигналов в ионосфере. Применение упрощенной модели ионосферы позволяет уменьшить, как минимум, в два раза влияние ионосферы на среднеквадратическую погрешность определения положения НАП ГНСС [1, С.125]. С большей погрешностью эта модель предсказывает поведение ионосферы в экваториальных и высоких широтах [2, С.85]. Величина задержки сигналов в ионосфере на практике зависит от солнечной активности (11-летний цикл), сезонных и ежедневных вариаций, угла места и азимута НКА, а также от широты и долготы расположения НАП ГНСС. Величина погрешности измерения псевдодальности за счет задержки сигнала в ионосфере может лежать в пределах от 0.15 до 50 метров [3, С.104]. Ионосфера, главным образом, влияет на величину погрешностей измерения псевдодальностей, измеренных по дальномерному коду и по фазе несущей частоты. Известен способ определения задержки сигналов в ионосфере на одной частоте [4], заключающийся в определении разности между псевдодальностями, измеренными по дальномерному коду и по фазе несущей частоты, основанный на том, что в ионосфере скорость распространения фазы сигнала несущей частоты больше скорости света в свободном пространстве настолько, насколько скорость распространения модулирующего сигнала меньше скорости света. Разность измерений псевдодальности по дальномерному коду и по фазе несущей частоты равна удвоенной ионосферной задержке сигнала и может быть использована для ее определения, путем решения следующей системы уравнений [4] ![]() где Ob( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Оценка величины вертикальной задержки сигналов и начальной неоднозначности фазовых измерений в данном способе производится при помощи фильтра Калмана. Вектор состояния фильтра Калмана включает вертикальную задержку, начальные фазовые неоднозначности, а также коэффициенты полинома, аппроксимирующего горизонтальную вариацию вертикальной задержки сигнала в ионосфере. Размерность вектора состояния, используемого в фильтре, зависит от числа НКА и аппроксимирующего полинома. В данном способе размерность вектора состояния равна m=n(k)+3 [4]. Недостатком прототипа является большая размерность вектора состояния, что влечет за собой большой объем вычислений при его реализации, а также увеличивает время сходимости. Начальные фазовые неоднозначности, которые входят в состав вектора состояния, приходится заново оценивать при кратковременной потере сигнала НКА и срыве процесса слежения за несущей НКА, а также при появлении нового НКА [4]. При оценке начальных фазовых неоднозначностей не учитывается их целочисленность. Все это снижает быстродействие и устойчивость работы, уменьшает скорость сходимости алгоритма, реализующего известный способ. В основу изобретения положена задача упрощения способа оценки задержки сигналов в ионосфере, а также повышение его быстродействия. Поставленная задача решается тем, что в способе одночастотного определения задержки сигналов навигационной спутниковой системы в ионосфере, по которому измеряют псевдодальности по дальномерному коду и по фазе несущей частоты, согласно изобретению дополнительно определяют приращения псевдодальностей за время между текущим и предыдущим измерениями, затем определяют разности приращений псевдодальностей, а задержку сигнала в ионосфере определяют из системы уравнений ![]() ![]() где ![]() ![]() ![]() ![]() ![]() ![]() 1. ICD-GPS-200, Revision C, U.S. Government, October 10, 1993. Сетевые спутниковые радионавигационные системы. /В.С. Шебшаевич, П.П. Дмитриев, Н. В. Иванцевич и др.; Под ред. В.С. Шебшаевича. – 2-е изд., перераб. И доп. – М.: Радио и связь, 1993. – 408 с. 3. Hofmann-Wellenhof B., Lichtenegger H., Collins J. Global Positioning System. Theory and Practice. Springer-Verlag Wien New York, 1994. – 356 p. th International conference on “Differential Satellite Navigation Systems”, Additional Volume, St. Petersburg, Russia, May, 1996. 5. Гришин Ю.П., Казаринов Ю.М. Динамические системы, устойчивые к отказам. – М.: Радио и связь, 1985. – 176 с. Формула изобретения Способ одночастотного определения задержки сигналов навигационной спутниковой системы в ионосфере, по которому измеряют псевдодальности по дальномерному коду и по фазе несущей частоты, отличающийся тем, что дополнительно определяют приращения псевдодальностей за время между текущим и предыдущим измерениями, затем определяют разности приращений псевдодальностей, а задержку сигнала в ионосфере определяют из системы уравнений ![]() ![]() ![]() где ![]() – функция для пересчета вертикальной задержки в наклонную; ![]() I ![]() a1(k), a2(k) – коэффициенты полинома, аппроксимирующего горизонтальную вариацию вертикальной задержки сигнала в ионосфере; ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() n(k) – число радиовидимых НКА в k-й момент времени. РИСУНКИ
|
||||||||||||||||||||||||||