Патент на изобретение №2207409
|
||||||||||||||||||||||||||
(54) СПОСОБ ЭКСПЛУАТАЦИИ ЭЛЕКТРОЛИЗЕРОВ ДЛЯ ПРОИЗВОДСТВА АЛЮМИНИЯ
(57) Реферат: Изобретение относится к получению алюминия электролизом криолитоглиноземного расплава. Способ эксплуатации электролизеров для производства алюминия включает контроль силы тока и состава модифицированного добавками фторидов криолитоглиноземного электролита и регулирование теплового режима электролизеров. На каждые 10oС повышения среднемесячных значений наружной температуры понижают силу тока на 0,2 ![]() ![]() ![]() ![]() ![]() ![]() сила тока 1 ![]() содержание LiF 1 ![]() содержание АlF3 1 ![]() ![]() 0,4-1,2 кА (80 кА); 0,8-2,4 кА (160 кА); 1,25-3,75 кА (255 кА). Нижнее значение диапазонов относится к электролизерам с минимальной теплоизоляцией катодного и анодного узлов, низкими уровнями металла и другими параметрами, уменьшающими тепловую инерционность электролизера. Верхнее значение имеет место для электролизеров с противоположными характеристиками. Диапазоны изменения содержания LiF и AlF3 одинаковы для всех типов электролизеров, при этом нижнему значению содержания добавок соответствует верхнее значение диапазона силы тока. Это обусловлено особенностями технологии и конструкции электролизера: например, в высокоинтенсифицированном режиме электролиза компенсацию изменений Тнар целесообразнее производить в меньшей мере силой тока и в большей мере составом электролита. Способ предусматривает относительно небольшие изменения содержания LiF и AlF3 с тем, чтобы не допустить интенсивное переформирование рабочего пространства электролизера в цикле зима – лето и переход с высокой скоростью большого количества компонентов электролита из жидкой фазы в твердую (гарниссаж и настыль) и обратно. По той же причине выбраны среднемесячные изменения Тнар. Теоретической и экспериментальной базой изобретения являются закономерности поведения электролизеров в циклах зима – лето, выявленные при обработке статистических данных по Богословскому, Красноярскому, Братскому, Саянскому алюминиевым заводам. Аналитическим и опытным путем установлен механизм воздействия добавок в электролит на ТЭ, ф.р.п. электролизера, определены тепловые эквиваленты по силе тока и греющему напряжению для различных типов электролизеров, компенсирующие изменения Тнар. Классификация добавок по влиянию на тепловой баланс электролизера позволила обосновать целесообразность взаимного замещения в определенной пропорции LiF и АlF3. Сущность замены одной добавки на другую и использования для регулирования теплового баланса именно этих добавок заключается в следующем. Все используемые в промышленности добавки в электролит, кроме Na2CО3, в большей или меньшей мере охлаждают электролизер. LiF обладает сильнейшим охлаждающим эффектом на TЭ, так как одновременно: – резко уменьшается приходная часть теплового баланса в связи со снижением электросопротивления и газонаполнения электролита; – максимально увеличивается расходная часть баланса (тепловые потери) при снижении Тликв на 9,6oС из расчета на 1% LiF. Изменение прихода и расхода тепла действуют в одном направлении – охлаждают электролизер. AlF3 имеет на порядок меньший по сравнению с LiF охлаждающий эффект ввиду одновременного увеличения как приходной части баланса (разогрев электролизера), так и расходной части (охлаждение электролизера), при этом охлаждающее влияние расходной части оказывается несколько сильнее (снижение Тликв на 3,2oС на 1% AlF3). Исходя из различного характера воздействия LiF и AlF3 на тепловой баланс, определены функции этих добавок: LiF используется для стабилизации ТЭ при изменениях Тнар, АlF3 – для стабилизации ф.р.п., компенсации влияния LiF на Тликв. СаF2 и MgF2 обладают слабым охлаждающим эффектом. Применение этих добавок для регулирования теплового баланса нецелесообразно ввиду технологических осложнений, связанных с образованием тугоплавких соединений (шлам, коржи) при больших изменениях концентрации СаF2 или MgF2 в электролите. Добавки LiF и AlF3, не имеют этих недостатков. Соотношение между изменениями силы тока и состава электролита определены с использованием новой методики анализа теплового баланса электролизеров, созданной в ходе освоения интенсивной технологии электролизного производства Богословского алюминиевою завода в период с 1997 по 2001 гг. Пример. Промышленные испытания предлагаемого способа эксплуатации электролизеров проводились в 2001 г. на Богословском алюминиевом заводе в объеме 2-х корпусов электролиза. В таблице приведены показатели работы опытного корпуса 3 и корпуса-свидетеля 2 за январь 2001 г. (Тнар=-22oС) и июль 2001 года (Тнар= +19oС). При переходе от зимнего периода к летнему в опытном корпусе ежемесячно производилась корректировка силы тока и состава электролита соответственно изменениям Тнар. За январь – июль 2001 г. сила тока снижена на 0,72 кА (0,93% Iн), содержание LiF в электролите увеличено на 0,68 мас.%, избыток АlF3 уменьшен на 2,2 мас.% (увеличение к.о. на 0,14). Среднее значение ТЭ повысилось на 0,7oС. Уровни металла и электролита, ф.р.п. были стабильными. В корпусе-свидетеле состав электролита на начало и конец испытаний не изменился. Сила тока снижена на 1,2 кА (1,57% н), ТЭ повысилась на 4,6oС. Технологический режим отличался неустойчивостью работы АСУТП при регулировании м. п. р. , нестабильностью уровней металла и электролита, особенно в месяцы наиболее резкого изменения Тнар (апрель-май). При сохранившемся в среднем по корпусу составе электролита на январь и на июль 2001 г. разброс текущих значении содержания добавок по отдельным ваннам был в 2,5 раза больше по сравнению с опытным корпусом из-за переходных процессов в электролизерах. Снижение силы тока на 1,57% Iн не обеспечило, таким образом, стабильность теплового режима и сохранение оптимальных параметров силы тока, м.п.р., ТЭ и ф.р.п. В опытном корпусе диапазоны колебаний средних значений силы тока уменьшен в 1,7 раза, ТЭ в 6,5 раз, м.п.р. в 3,6 раза, что позволило повысить производительность электролизера и снизить расход электроэнергии. Эффективность предлагаемого способа эксплуатации электролизеров подтверждается следующими основными результатами испытаний, полученными в опытном корпусе по сравнению со свидетелем: – повышение выхода по току на 1,5%; – повышение средней за период испытаний силы тока на 1,3%; – увеличение суточной производительности электролизера на 2,77%; – снижение удельного расхода электроэнергии на 2,3%. Формула изобретения Способ эксплуатации электролизеров для производства алюминия, включающий контроль силы тока и состава модифицированного добавками фторидов криолитоглиноземного электролита и регулирование теплового режима электролизеров, отличающийся тем, что на каждые 10oС повышения среднемесячных значений наружной температуры понижают силу тока на 0,2 ![]() ![]() ![]() РИСУНКИ
PC4A – Регистрация договора об уступке патента Российской Федерации на изобретение
(73) Патентообладатель(и):
(73) Патентообладатель:
(73) Патентообладатель:
(73) Патентообладатель:
(73) Патентообладатель:
(73) Патентообладатель:
Дата и номер государственной регистрации перехода исключительного права: 07.10.2004 № 20202
Извещение опубликовано: 10.12.2004 БИ: 34/2004
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 28.06.2006
Извещение опубликовано: 10.06.2007 БИ: 16/2007
|
||||||||||||||||||||||||||