Патент на изобретение №2206100

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2206100 (13) C1
(51) МПК 7
G01R31/00, G12B17/02
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 07.04.2011 – может прекратить свое действие

(21), (22) Заявка: 2001133471/09, 13.12.2001

(24) Дата начала отсчета срока действия патента:

13.12.2001

(45) Опубликовано: 10.06.2003

(56) Список документов, цитированных в отчете о
поиске:
RU 2118475 С1, 27.08.1998. RU 2104593 С1, 10.02.1998. RU 2085046 С1, 20.07.1997. RU 2121671 С1, 10.11.1998. US 5414366 A, 09.05.1995. GB 2342724 A, 19.04.2000. DE 4329130 A, 02.03.1995.

Адрес для переписки:

115201, Москва, Каширское ш., 13А, ФГУП ГНПП “Регион”, В.В.Богомягкову

(71) Заявитель(и):

Богомягков Виктор Владимирович,
Бороничев Геннадий Константинович,
Володин Леонид Алексеевич,
Прокин Виктор Федорович,
Соколов Анатолий Яковлевич,
Фролов Владимир Павлович,
Шахиджанов Евгений Сумбатович

(72) Автор(ы):

Богомягков В.В.,
Бороничев Г.К.,
Володин Л.А.,
Прокин В.Ф.,
Соколов А.Я.,
Фролов В.П.,
Шахиджанов Е.С.

(73) Патентообладатель(и):

Богомягков Виктор Владимирович,
Бороничев Геннадий Константинович,
Володин Леонид Алексеевич,
Прокин Виктор Федорович,
Соколов Анатолий Яковлевич,
Фролов Владимир Павлович,
Шахиджанов Евгений Сумбатович

(54) АВТОМАТИЗИРОВАННЫЙ ЭКОЛОГИЧНЫЙ ИЗМЕРИТЕЛЬНЫЙ КОМПЛЕКС ДЛЯ ОПРЕДЕЛЕНИЯ УСТОЙЧИВОСТИ ТЕХНИЧЕСКИХ СРЕДСТВ К ВОЗДЕЙСТВИЮ ВНЕШНИХ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ


(57) Реферат:

Использование: при испытаниях по определению устойчивости к воздействию электромагнитных полей изделий бытовой техники, корабельной, авиационной, ракетной техники, автомобильной промышленности и атомной энергетики. Технический результат заключается в автоматизации процесса испытаний при повышении помехозащищенности, объективной достоверности и оперативности измерений, а также возможности проведения испытаний объектов в рабочих режимах и в условиях эксплуатации. В автоматизированном измерительном комплексе, содержащем связанные между собой генератор испытательных помех, объект испытаний и измерительно-вычислительное устройство, а также приемную антенну, соединенную с измерительно-вычислительным устройством, испытательная линия связи снабжена кодовым модулятором, подключенным к выходу генератора испытательных помех и соединенным последовательно с электронно-оптическим преобразователем, волоконно-оптической линией и оптико-электронным преобразователем, а измерительная линия связи выполнена в виде последовательно соединенных электронно-оптического преобразователя, волоконно-оптической линии, оптико-электронного преобразователя и декодера, подключенного к входу измерительно-вычислительного устройства, при этом кодовый модулятор соединен с измерительно-вычислительным устройством, а приемная антенна установлена на сканирующем устройстве, соединенном линией управления с измерительно-вычислительным устройством. 1 з.п.ф-лы, 2 ил.


Изобретение относится к области создания технических средств – электротехнических, электронных и радиоэлектронных изделий, оборудования, аппаратуры и их составных частей, а именно к направлению обеспечения электромагнитной совместимости (ЭМС), и может быть использовано при испытаниях по определению устойчивости к воздействию электромагнитных полей (ЭМП) изделий бытовой техники, корабельной, авиационной, ракетной техники, автомобильной промышленности, а также атомной энергетики и др.

Известны устройства для определения устойчивости технических средств при испытаниях различных изделий корабельной, авиационной и другой техники к воздействию внешних электромагнитных полей (см. стандарт MIL-STD-462D 1993 г. , США, ERA Technology Report 94-0049 “Automative Electromagnetic Compatibility”, стр. 104-113; Хабигер Э. Электромагнитная совместимость. Основы ее обеспечения в технике, М.: Энергоатомиздат, 1995 г., с. 202-220), где применяются мощные излучающие средства для создания высоких ЭПМ с нормированными величинами электрической составляющей. Эти поля воздействуют на электрические цепи подвергаемых испытаниям изделий, а результаты испытаний оцениваются по сохранению их работоспособности и при необходимости дополнительно определяется наведенный в элементах цепей ток различными измерительными средствами. Испытания проводятся как на специальных открытых измерительных площадках полигонов, так и в закрытых экранированных и безэховых камерах с дорогостоящим оборудованием.

В качестве источников ЭМП обычно применяются штатные образцы радиостанций, радиолокационных установок и специальные генераторы с усилительным и облучающим оборудованием.

На фиг.1 представлена схема подобного устройства, содержащая объект испытаний РО, генератор испытательных помех G, излучающую антенну А, приемную антенну FS, расположенную в испытательной зоне или в непосредственной близости от объекта испытаний, измеритель напряженности поля ME, преобразующее устройство SP, измерительную линию связи с испытуемым объектом W, прибор контроля U и экранированное помещение или полигонную измерительную площадку SW.

С помощью генератора G и излучающей антенны А, установленной на расстоянии L от объекта РО, создается ЭМП с напряженностью, заданной величины Ен, которая контролируется с помощью приемной антенны FS, соединенной с измерителем напряженности поля ME. В исследуемую электрическую цепь объекта на место штатного элемента, подверженного воздействию ЭМП, устанавливается преобразующее устройство SP, оттарированное по току. С его выхода ЭДС, пропорциональная наведенному току, по измерительной линии связи W поступает на прибор контроля U, где фиксируется и сравнивается с допустимым током штатного элемента.

При отсутствии цепи измерения SP – W – U результаты испытаний оцениваются по сохранению объектом качества функционирования в диапазоне режимов работы при облучении его ЭМП с напряженностью Ен.

Данному устройству присущи следующие недостатки:
– проведение испытаний связано с созданием мощных ЭМП с напряженностью до 1500 В/м в частотном диапазоне до 10 ГГц, которые создают опасность для здоровья людей и окружающей среды;
– создание и использование полигонов, зданий и камер, привлечение дорогостоящего оборудования требуют значительных капитальных вложений и эксплуатационных расходов;
– процессы подготовки и проведения испытаний являются весьма трудоемкими, длительными и дорогостоящими;
– при проведении испытаний обеспечивается лишь итоговое разовое получение результатов испытаний на уже созданном образце, в основном, с констатацией факта его нормального или ненормального функционирования при воздействии заданного ЭМП без возможности анализа количественных значений параметров, характеризующих устойчивость, и без определения конкретной области на поверхности объекта или конструктивного узла, требующего дополнительной защиты или доработки;
– невозможность проведения испытаний объектов в условиях эксплуатации, при работе в составе комплекса, в реальной электромагнитной обстановке, с учетом процессов естественного старения и при модернизации.

Известно также устройство “Универсальный экологический измерительный комплекс для определения устойчивости технических средств к воздействию внешних электромагнитных полей”(см. патент РФ 2118475 С1, кл. G 12 В 17/02, G 01 R 31/00, 1998), которое принято в качестве прототипа заявленного объекта изобретения.

Данное устройство содержит генератор испытательных помех, один из выходов которого соединен испытательной линией связи со входом объекта испытаний, а другой посредством линии связи с одним из входов измерительно-вычислительного устройства, а также приемную антенну, соединенную измерительной линией связи с другим входом измерительно-вычислительного устройства, соединенного в свою очередь посредством линии обратной связи с генератором испытательных помех, при этом испытательная линия связи выполнена в виде оптического кабеля и снабжена электронно-оптическим преобразователем и оптоэлектронным преобразователем в составе согласующе-преобразующего устройства.

В известном устройстве исследуемая электрическая цепь возбуждается нормированными сигналами генератора испытательных помех с частотой заданного внешнего ЭМП и создает в свободном пространстве вокруг объекта испытаний поле напряженностью с электрической составляющей, которая во всех режимах испытаний не превышает уровень 0,2 В/м, чем обеспечивается гарантированная экологическая безопасность при проведении испытаний. Величина электрической составляющей измеряется с помощью приемной антенны и измерительно-вычислительного устройства.

Измеренные параметры ЭМП в свободном пространстве позволяют получить пространственно-частотную характеристику, расчетным путем определить степень устойчивости исследуемой электрической цепи к воздействию заданных высокочастотных, а также импульсных ЭМП, используя при этом информацию, передаваемую по линии связи с выхода генератора испытательных помех на вход измерительно-вычислительного устройства и по линии обратной связи между ними.

Указанное устройство устраняет недостатки традиционно применяемых средств, обеспечивая экологическую безопасность испытаний, повышение их экономичности и мобильности, возможность многоразовых испытаний объектов в обычных лабораторных и производственных условиях, в том числе на ранних стадиях разработки объекта, получение количественных значений параметров, характеризующих электромагнитную устойчивость, для анализа и выработки решений по устранению обнаруженных дефектов функционирования объекта.

Однако при всех приведенных положительных качествах данного устройства в нем не предусмотрены меры по гарантированной помехозащищенности измерений в условиях интенсивных внешних электромагнитных помех, что характерно для большинства условий эксплуатации; не решены в полном объеме вопросы проведения испытаний объектов, находящихся в “горячем” состоянии, т.е. функционирующих в заданных режимах работы; не полностью решена задача автоматизации процесса испытаний в виде единой комплексной системы, что особенно важно для объектов, имеющих протяженные габариты, сложную конфигурацию поверхностей и большое количество цепей, чувствительных к воздействию ЭМП; это является ограничением для практического применения устройства и недостатком последнего.

Задачей, на решение которой направлено заявленное изобретение, является создание устройства, способного обеспечить при использовании технический результат, связанный с автоматизацией процесса испытаний при повышении помехозащищенности, объективной достоверности и оперативности измерений, а также с возможностью проведения испытаний объектов в работающем состоянии в заданных режимах и в условиях эксплуатации при сохранении экологической безопасности, экономичности и мобильности испытаний, возможности проведения многоразовых испытаний объектов в обычных лабораторных и производственных условиях и анализа их устойчивости к воздействию высокочастотных и импульсных внешних ЭМП по получаемым количественным значениям характерных параметров.

Указанная задача в предлагаемом устройстве решена за счет того, что в известном устройстве, принятом за прототип заявленного объекта изобретения, испытательная линия связи дополнительно снабжена кодовым модулятором в составе согласующе-преобразующего устройства, подключенным к выходу генератора испытательных помех, а измерительная линия связи выполнена аналогично испытательной линии связи и снабжена декодером, подключенным к входу измерительно-вычислительного устройства, при этом кодовый модулятор соединен с измерительно-вычислительным устройством.

Кроме того, указанная задача в предлагаемом изобретении решена за счет того, что приемная антенна установлена на сканирующем устройстве, соединенном линией управления с измерительно-вычислительным устройством.

Сущность изобретения поясняется чертежом на фиг.2, где представлена принципиальная схема предлагаемого устройства.

Автоматизированный экологичный измерительный комплекс для определения устойчивости технических средств к воздействию внешних электромагнитных полей содержит генератор испытательных помех 1, один из выходов которого соединен испытательной линией связи 2 со входом объекта испытаний 3, а другой посредством линии связи 4 со входом измерительного вычислительного устройства 5.

Испытательная линия связи 2 выполнена в виде оптического кабеля и снабжена электронно-оптическим преобразователем 6 и оптоэлектронным преобразователем 7 в составе согласующе-преобразующего устройства 8. На испытательной линии связи 2 в составе согласующе-преобразующего устройства 8 установлен кодовый модулятор 9, подключенный к выходу генератора испытательных помех 1. Кодовый модулятор 9 соединен линией связи 10 с измерительно-вычислительным устройством 5, которое в свою очередь соединено линией обратной связи 11 с генератором испытательных помех 1. Приемная антенна 12 установлена на сканирующем устройстве 13 и соединена измерительной линией связи 14 с измерительно-вычислительным устройством 5. Измерительная линия связи 14 выполнена аналогично испытательной линии связи 2 в виде оптического кабеля и снабжена декодером 15, подключенным к входу измерительно-вычислительного устройства 5. Сканирующее устройство 13 соединено линией управления 16 с измерительно-вычислительным устройством 5.

Устройство работает следующим образом.

Вначале в заданном частотном диапазоне при выключенном генераторе испытательных помех 1 по программе измеряется с помощью приемной антенны 12 и измерительной линии связи 14 ЭМП окружающей среды и внешнее пространственное поле работающего объекта испытаний 3 Е. Эта информация, накопленная в измерительно-вычислительном устройстве 5, снабженным единым программно-математическим обеспечением, учитывается при последующих испытаниях и может учитываться самостоятельно для оценки ЭМС.

Генератор испытательных помех 1 может быть выполнен либо в виде источника электрического тока, модулированного по амплитуде с частотой внешнего ЭМП с нормативной электрической составляющей напряженности, либо в виде источника света с соответствующей модуляцией светового потока.

При включении генератора испытательных помех 1 вырабатываемые им стимул-сигналы в диапазоне частот заданного внешнего ЭМП по испытательной линии связи 2 подаются в исследуемые цепи объекта испытаний 3 и одновременно по линии связи 4 в измерительно-вычислительное устройство 5.

Для обеспечения гальванической развязки и устранения влияния подводящих кабелей на результаты испытаний испытательная линия связи 2 выполнена в виде оптического кабеля с соответствующими электронно-оптическим 6 и оптоэлектронным 7 преобразователями в составе согласующе-преобразующего устройства 8.

Электрические стимул-сигналы, вырабатываемые генератором испытательных помех 1, преобразуются в кодовом модуляторе 9, установленном на выходе последнего и входящем в состав согласующего-преобразующего устройства 8, в кодированные модулированные сигналы, которые по линии связи 10 поступают в измерительно-вычислительное устройство 5, а по испытательной линии связи 2 с помощью электронно-оптического преобразователя 6 преобразуются в оптические модулированные сигналы, а затем с помощью оптоэлектронного преобразователя 7 производится обратное преобразование сигналов. Указанные сигналы возбуждают каждую из исследуемых электрических цепей объекта испытаний 3, которая создает в свободном пространстве вокруг объекта испытаний ЭМП с соответствующей напряженностью Е, воспринимаемой и преобразуемой в электрический кодированный сигнал приемной антенной 12. Так как приемная антенна 12 установлена на программно-управляемом от измерительно-вычислительного устройства 5 сканирующем устройстве 13, обеспечивается получение пространственно-частотной характеристики объекта испытаний 3 при возбуждении каждой его цепи, из числа выбранных для исследования.

Электрический кодированный сигнал с приемной антенны 12 по измерительной линии связи 14 поступает в измерительно-вычислительное устройство 5. Измерительная линия связи 14 выполнена аналогично испытательной линии связи 2 и при прохождении по ней электрического кодированного сигнала он преобразуется в оптический и после обратного преобразования поступает на декодер 16, где декодируется с выделением сигнала, воспринимаемого измерительно-вычислительным устройством 5.

В измерительно-вычислительном устройстве 5 на основании полученной совокупности информации производятся необходимые расчеты, обработка и анализ информации, осуществляется управлением режимами работы генератора испытательных помех 1 по линии обратной связи 11, определяется наиболее чувствительная цепь объекта испытаний, его полная пространственно-частотная характеристика и дается оценка устойчивости объекта испытаний 3 по отношению к заданным внешним радиочастотным и импульсным полям с отображением и документированием результатов испытаний, а также с общим заключением и рекомендациями.

Заявленное устройство обеспечивает автоматизацию процесса испытаний при повышенной помехозащищенности, достоверности и оперативности измерений с документированным представлением результатов испытаний. Кроме того, устройство обеспечивает возможность проведения испытаний объектов в рабочих режимах функционирования и в условиях эксплуатации при сохранении экологической безопасности, экономичности и мобильности испытаний, а также возможность проведения многоразовых испытаний объектов в обычных лабораторных и производственных условиях с комплексной оценкой устойчивости объекта к воздействию внешних радиочастотных и импульсных ЭМП.

Формула изобретения


1. Автоматизированный экологичный измерительный комплекс для определения устойчивости технических средств к воздействию внешних электромагнитных полей, содержащий генератор испытательных помех, один из выходов которого соединен испытательной линией связи со входом объекта испытаний, а другой посредством линии связи с одним из входов измерительно-вычислительного устройства, а также приемную антенну, соединенную измерительной линией связи – с другим входом измерительно-вычислительного устройства, соединенного, в свою очередь, посредством линии обратной связи с генератором испытательных помех, отличающийся тем, что испытательная линия связи выполнена в виде согласующе-преобразующего устройства, содержащего последовательно соединенные кодовый модулятор, электронно-оптический преобразователь и оптико-электронный преобразователь, а при прохождении электрического кодированного сигнала с приемной антенны он преобразуется в оптический и после обратного преобразования поступает на декодер, установленный на входе измерительно-вычислительного устройства, при этом кодовый модулятор соединен с измерительно-вычислительным устройством.

2. Автоматизированный экологичный измерительный комплекс по п.1, отличающийся тем, что приемная антенна установлена на сканирующем устройстве, соединенном линией управления с измерительно-вычислительным устройством.

РИСУНКИ

Рисунок 1, Рисунок 2

Categories: BD_2206000-2206999