Патент на изобретение №2205335
|
||||||||||||||||||||||||||
(54) ВИХРЕВАЯ ТРУБА
(57) Реферат: Изобретение относится к комбинированным системам для нагрева и охлаждения. Внутренняя поверхность камеры энергетического разделения выполнена со спиралью. Толщина спирали составляет (0,05-0,3)D, где D – диаметр внутренней поверхности камеры энергоразделения. Шаг спирали может соответствовать пространственному периоду завихренного входного потока в осевом направлении камеры, а направление навивки спирали противоположно направлению вращения входного потока. Использование изобретения позволит повысить эффективность энергетического разделения потока в вихревой трубе. 1 з.п. ф-лы, 1 ил. Изобретение относится к комбинированным системам для нагрева и охлаждения и может использоваться в различных областях науки и техники, в частности в системах воздушного охлаждения (нагрева). Известна вихревая труба, содержащая камеру энергетического разделения, завихритель входного потока, диафрагму вывода охлажденного потока и дроссельный кран, установленный на выходе нагретого потока [1-3]. Однако эффективность энергетического разделения потока (другими словами, холодопроизводительность) для этой трубы невелика. Наиболее близким техническим решением является вихревая труба, содержащая камеру энергетического разделения, завихритель входного потока, диафрагму вывода охлажденного потока и дроссельный кран, установленный на выходе нагретого потока [4]. Однако эффективность энергетического разделения потока (другими словами, холодопроизводительность) для этой трубы невелика. Технический результат, который может быть получен при осуществлении изобретения, состоит в повышении эффективности энергетического разделения потока в вихревой трубе (в повышении холодопроизводительности). Этот результат достигается тем, что в вихревой трубе, содержащей камеру энергетического разделения, завихритель входного потока, диафрагму вывода охлажденного потока и дроссельный кран, установленный на выходе нагретого потока, внутренняя поверхность камеры снабжена спиралью. В частности, шаг спирали может соответствовать пространственному периоду завихренного входного потока в осевом направлении камеры, причем направление навивки спирали противоположно направлению вращения входного потока. На чертеже представлена схема вихревой трубы. Вихревая труба содержит камеру 1 энергетического разделения потока с внутренней поверхностью 2, завихритель 3, диафрагму 4 вывода охлажденного потока, дроссельный кран 5, установленный на выходе нагретого потока. На внутренней поверхности 2 камеры 1 установлена спираль 6, шаг которой соответствует пространственному периоду завихренного входного потока в осевом направлении камеры, а направление навивки спирали противоположно направлению вращения входного потока. В частности, шаг спирали может быть переменным, например, увеличиваясь с удалением от завихрителя. Толщина спирали 6 (соответствующий размер в радиальном направлении) составляет (0,05-0,3)D, где D – диаметр внутренней поверхности 2 камеры 1. В частности, сечение спирали может представлять собой круг (см. чертеж). В этом случае толщина спирали равна диаметру проволоки, из которой навита эта спираль. Работает вихревая труба следующим образом. Входной поток (от внешнего источника, на чертеже не показанного) под давлением в несколько атмосфер поступает в завихритель 3, обеспечивающий формирование закрученной (завихренной) струи в камере энергетического разделения 1. За счет эффекта Ранка в камере 1 периферийная (пристеночная) область потока нагревается, а центральная (приосевая) охлаждается. Пространственное разделение охлажденного и нагретого потоков осуществляется с помощью дроссельного крана 5 и диафрагмы 4. Отметим, что на чертеже представлена схема так называемой противоточной трубы [1], но возможна несколько иная компоновка, соответствующая прямоточной трубе. В периферийной области камеры 1 закрученная струя имеет спиралеобразный вид [1], причем шаг спирали, вообще говоря, увеличивается с удалением от завихрителя (в ряде работ вместо характеристики “шаг” используют “угол наклона спирали”). При некотором частичном перекрытии крана 5 в приосевой области камеры 1 формируется возвратный поток холодного (точнее, охлажденного) воздуха, который выходит из трубы через диафрагму 4. Проведенные эксперименты показали, что введение в вихревую трубу спирали, выполненной указанным образом, при неизменном давлении входного потока позволяет в несколько раз повысить расход воздуха через диафрагму 4 и на несколько градусов понизить температуру холодного воздуха, т.е. в несколько раз повысить холодопроизводительность вихревой трубы. При этом форма спирали и ее положение в камере 1 подбирались экспериментально. К настоящему времени этот эффект в литературе не описан, отсутствует и его теоретическое объяснение. Одна из возможных гипотез, объясняющих эффект спирали, состоит в следующем. Согласно литературным данным входной (периферийный) поток в камере 1 представляет собой свободный (или комбинированный) вихрь, у которого максимум тангенциальной скорости находится на расстоянии 0,6-0,9 R от оси камеры 1 (R – радиус внутренней поверхности 2 камеры 1, 2R=D), Поток холодного воздуха представляет собой вынужденный вихрь, диаметр которого (в зависимости от давления на входе и т.д.) составляет (0,1-0,5)D. Спираль расположена в области внешнего вихря, там, где тангенциальная скорость максимальна. Этот вихрь (его ось) прецессирует во времени нерегулярным образом [3], причем направление прецессии противоположно направлению вращения вихря. Соответственно, направление прецессии совпадает с направлением навивки спирали. В результате взаимодействия вихря со спиралью прецессия в определенной мере стабилизируется в пространстве и времени. При этом улучшаются условия для разделения потоков холодного и горячего воздуха. Помимо этого, возможно, что при указанных параметрах и ориентации спирали происходит более интенсивный обмен турбулентными “микровихрями” между периферийным и приосевым потоками воздуха, в частности, за счет генерации “микровихрей” определенного размера. Все это в совокупности приводит к повышению эффективности переноса тепла от приосевого (холодного) потока к периферийному (горячему) потоку, т.е. к дополнительному охлаждению приосевого потока. Таким образом, введение спирали указанной формы позволяет повысить холодопроизводительность вихревой трубы. Источники информации 1. Меркулов А.П. Вихревой эффект и его применение в технике. М.: Машиностроение, 1969. – 184 с. 2. Гуцол А.Ф. Эффект Ранка. Успехи физических наук, 1997. – Том 167, 6. – С.665-687. 3. Патент РФ 2067266, кл. F 25 B 9/02, 1996. 4. Патент РФ 2170892, кл. F 25 B 9/04, 2001. Формула изобретения
РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 09.11.2004
Извещение опубликовано: 10.03.2006 БИ: 07/2006
|
||||||||||||||||||||||||||