Патент на изобретение №2205218
|
||||||||||||||||||||||||||
(54) РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК P31NC, КОДИРУЮЩАЯ 125 АМИНОКИСЛОТНЫЙ НУКЛЕОКАПСИДНЫЙ БЕЛОК ВИРУСА РЕПРОДУКТИВНО-РЕСПИРАТОРНОГО СИНДРОМА СВИНЕЙ И ОБЕСПЕЧИВАЮЩАЯ ЕГО ЭКСПРЕССИЮ В КЛЕТКАХ БАКТЕРИЙ E.COLI
(57) Реферат: Изобретение относится к области биотехнологии и генетической инженерии и может быть использовано в диагностике заболеваний свиней. Сконструирована in vitro рекомбинантная плазмидная ДНК p31NC, кодирующая полипептид RNC, в котором аминокислотная последовательность Met Arg Gly Ser His His His His His His Ile Pro своим С-концом соединена с последовательностью нуклеокапсидного белка (NC-белка) вируса РРСС. Плазмидная ДНК состоит из химически регулируемого (IPTG) промотора/оператора фага Т5, синтетического рибосом-связывающего сайта, терминатора транскрипции фага лямбда, гена ![]() Изобретение относится к биотехнологии, в частности к генетической инженерии, и представляет собой сконструированную in vitro рекомбинантную плазмидную ДНК, кодирующую нуклеокапсидный белок (NC-белок) вируса репродуктивно-респираторного синдрома свиней (РРСС) под контролем индуцибельного промотора, обусловливающего биосинтез полипептида. Рекомбинантная плазмидная ДНК p31NC кодирует полипептид NC, в котором аминокислотная последовательность MetArgGlySerHisHisHisHisHisHisIlePro своим С-концом соединена с последовательностью NC-белка вируса РРСС. Плазмидная ДНК состоит из химически регулируемого (IPTG) промотора/оператора фага Т5, синтетического рибосом-связывающего сайта, терминатора транскрипции фага лямбда, гена ![]() кодирует аминокислотную последовательность гибридного белка: MetArgGlySerHisHisHisHisHisHisIlePro-NC-белок, содержит HindIII/BamHI-фрагмент ДНК плазмиды pQE31, включающего промотор/оператор фага Т5, синтетический рибосом-связывающий сайт, терминатор транскрипции фага лямбда и в качестве генетического маркера ген ![]() содержит также BamHI/Hindlll-фрагмент, кодирующий 125 аминокислотный NС-белок вируса РРСС. Сущность изобретения пояснена на графических материалах, где на: – фиг.1 представлена физическая карта рекомбинантной плазмиды p31NC; – фиг. 2 – нуклиотидная последовательность и соответствующая аминокислотная последовательность 125 аминокислотного NC-белка вируса РРСС. Синтетический ген, кодирующий NC-белок вируса РРСС, получают амплификацией фрагмента генома вируса (ген NC-белка) в полимеразной цепной реакции (ПЦР) с использованием олигонуклеотидных праймеров, в структуре которых содержатся сайты кливажа для эндонуклеаз BamHI и HindIII. Таким образом, в процессе амплификации гена NC-белка осуществляется олигонуклеотид – направленный мутагенез с образованием синтетического фрагмента, фланкированного сайтами BamHI и HindIII. Далее проводят клонирование амплифицированного фрагмента в плазмиде pGEM, так как исходный материал содержит гетерогенную вирусную популяцию. Для клонирования проводят рестрикцию плазмиды и фрагмента эндонуклеазами BamHI и HindIII с последующим лигированием. Лигазную смесь используют для трансформации компетентных клеток E.coli JM109. Трансформанты высевают на LB-агар, содержащий 50 мкг/мл ампициллина и скрининг колоний проводят BamHI/HindIII рестрикцией. Структура фрагмента подтверждается определением нуклеотидной последовательности плазмидной ДНК между сайтами BamHI и HindIII. Для конструирования экспрессирующей плазмиды р31МС плазмидную ДНК pGEM-NC линеаризуют эндонуклеазами BamHI и HindIII и из рестрикционной смеси фрагмент гена NC-белка выделяют электрофорезом в 4% полиакриламидном геле с последующей элюцией. С другой стороны ДНК плазмиды рQЕ31 линеаризуют рестриктазами BamHI и HindIII и очищают гель-фильтрацией. После этого проводят лигирование плазмиды pQE31 с фрагментом гена NC-белка, трансформацию лигазной смесью компетентных клеток JM 109, а трансформанты высевают на LB-агар, содержащий 50 мкг/мл ампициллина. Скрининг проводят рестрикцией с последующим определением нуклеотидной последовательности BamHI/HindIII-фрагмента рекомбинантной плазмиды. Рекомбинантная плазмидная ДНК p31NC кодирует рекомбинантный белок, в котором аминокислотная последовательность MetArgGlySerHisHisHisHisHisHisIlePro своим С-концом соединена с последовательностью NC-белка вируса РРСС. После трансформации рекомбинантной плазмидой p31NC компетентных клеток E.coli, например, JM109, экспрессии в них рекомбинантного белка и очистки его методом аффинной хроматографии, данный рекомбинантный белок NC-белок может быть использован в качестве антигена вируса РРСС при различных модификациях диагностических серологических тестов. Изобретение иллюстрируется следующими примерами. Пример 1. Выделение РНК вируса из патматериала. Образец патматериала (1 г) растирают в ступке со стеклянным порошком и добавляют 9 мл STE-буфера. Суспензию осветляют центрифугированием при 5000 g в течение 30 мин. 100 мкл осветленной суспензии смешивают с 200 мкл 6 М гуанидинизотиоцианата и инкубируют 3-5 мин при комнатной температуре. Добавляют 300 мкл 96% этанола, перемешивают и пропускают смесь через центрифужную миниколонку со стекловолокнистым фильтром типа GF/F (Whatman). Миниколонку с фильтром промывают 2 мл 80% этанола и центрифугируют 1 мин при 13000 g для полного удаления этанола. Затем миниколонку переносят в новую пробирку на 1,5 мл и РНК элюируют с фильтра 50 мкл воды. Через 1-2 мин после добавления воды пробирку с миниколонкой центрифугируют при 13000 g в течение 30 сек, миниколонку удаляют, а раствор РНК используют для реакции обратной транскрипции и апмлификации. Пример 2. Синтез кДНК на матрице вирусной РНК. Выделенную вирусную РНК добавляют к реакционной смеси, содержащей 10 мМ Трис-HCl, рН 8,3; 8 мМ MgCl2; 50 мМ KCl; 15 пмоль праймера “Н”; 1 мМ dATP, dTTP, dCTP, dGTP, 10 ед. обратной транскриптазы. Реакцию проводят в течение 30 минут при 42oС. После этого содержимое пробирки прогревают в течение 3 мин при 95oС. Пример 3. Полимеразная цепная реакция. 5 мкл раствора, содержащего кДНК, добавляют к 45 мкл раствора, содержащего 15 мМ трис-HCl, рН 9,0; 50 мМ KCl; 2,5 мМ МgСl2, 0,1% BSA; 0,2 мМ каждого из четырех dNTP, 2 единицы Taq-полимеразы и по 25 пмоль праймеров “Н” и “В”. ПЦР состоит из 25 циклов: 95oС – в течение 30 сек, 56oС – в течение 30 сек, 73oС – в течение 1 мин. В конце реакции проводят завершающий синтез при 73oС в течение 3 мин. Пример 4. Конструирование рекомбинантной плазмиды pGEM-NC. После завершения ПЦР реакционную смесь переосаждают спиртом и растворяют в 25 мкл воды. Затем 20 мкл раствора, содержащего амплифицированные фрагменты кДНК, гидролизуют при температуре 37oС в течение 1-2 часов в присутствии эндонуклеаз BamHI и HindIII в реакционной смеси “R” следующего состава: 10 мМ Трис-HCl; 10 мM MgCl2; 100 мМ KCl; 1 мМ DTT (рН 8,7). Очистку фрагмента от продуктов гидролиза проводят на миниколонках со стекловолокнистым фильтром, аналогичную процедуру гидролиза осуществляют с плазмидой pGEM с последующей очисткой методом гель-фильтрации. Лигирование фрагмента и плазмиды проводят в течение часа при 37oС в 20 мкл реакционной смеси “L” состава: 20 мМ Трис-HCl; рН 7,5; 10 мМ MgCl2; 0,5 мМ rATP; 5 мM DTT; 10 ед. Т4 ДНК лигазы. 5 мкл реакционной смеси используют для трансформации компетентных клеток E.coli JM109. Трансформацию проводят следующим образом. Предварительно клетки E.coli JM109 высевают на агар, содержащий среду М9, 0,2% глюкозы и 2 мкг/мл тиамина. Единичную колонию вносят в 50 мл питательного бульона LB и выращивают при 37oС до мутности 0,3-0,5. Затем клетки охлаждают, осаждают центифугированием (10 мин, 5000 об/мин), промывают раствором 10 мМ MgCl2, центрифугируют, суспендируют в 20 мл 0,1 М раствора СаСl и выдерживают при 0oС в течение 30 минут. После центрифугирования клетки ресуспендируют в 3 мл 0,1 М СаСl и через 3 часа используют для трансформации. С этой целью 5 мкл лигазной смеси смешивают с 50 мкл 0,05 М CaCl2, затем добавляют 150 мкл суспензии компетентных клеток, выдерживают при 0oС, затем 2 мин – при 42oС и снова 10 мин – при 0oС, после чего добавляют 1 мл LB-бульона, инкубируют 1 час при 37oС и аликвоты высевают на чашки с LB-агаром, содержащим ампициллин (50 мкг/мл). Клоны бактерий, содержащие целевую плазмиду pQEM-NC идентифицируют рестрикцией плазмидной ДНК. Для этого клетки бактерий E.coli JM109, снятые с LB-агара с ампициллином, выращивают при 37oС в LB-бульоне, содержащем 100 мкг/мл ампициллина, до стационарной фазы. Затем плазмидную ДНК выделяют в соответствии с процедурой щелочной денатурации с модификациями, заключающимися в том, что к супернатанту добавляют РНКазу А до концентрации 10 мкг/мл, смесь инкубируют 20 мин при 37oС, экстрагируют дважды смесью фенол-хлороформ (1: 1), ДНК высаживают этанолом и растворяют в 20 мкл ТЕ-буфера. 5 мкл раствора плазмидной ДНК инкубируют в буфере “R”, содержащем 20 мM трис-HCl, рН 7,5; 50 мM NaCl, 10 мM MgCl2 и по 10 ед. эндонуклеаз BamHI и HindIII в течение часа при 37oС. Затем реакционную смесь из каждой пробирки смешивают с 5 мкл раствора, содержащего 50%-ный глицерин, бромфеноловый синий и наносят в “карман” 2% агарозного геля, который после электрофореза окрашивают этидиум бромидом и анализируют под ультрафиолетом. Окончательную структуру BamHI/HindIII-фрагмента плазмиды pGEM-NC подтверждают определением нуклеотидной последовательности методом дидезокситерминации. Пример 5. Конструирование экспрессирующей плазмиды p31NC. К раствору 10 мкг ДНК плазмиды pGEM-NC в 80 мкл буфера “R” прибавляют 20 ед. каждой из рестрикционных нуклеаз BamHI и HindIII и инкубируют 90 мин при 37oС. Одновременно 2 мкг ДНК плазмиды pQE31 обрабатывают в 20 мкл буфера “R” эндонуклеазами BamHI и HindIII. Анализ полноты гидролиза проводят элетрофорезом в 1% агарозном геле. Линеаризованную плазмиду pQE31 очищают гель-фильтрацией, а фрагмент электрофорезом в 4% ПААГе с последующей электроэлюцией на бумагу ДЕ-81, с которой фрагмент снимают 1,5 М NaCl2, осаждают этанолом и растворяют в 20 мкл ТЕ-буфера. Далее этот фрагмент (0,2 мкг) лигируют в 20 мкл буфера “L” с мкг ДНК плазмиды pQE31 в присутствии 10 ед. Т4 ДНК лигазы в течение 60 мин при 37oС. 10 мкл реакционной смеси используют для трансформации компетентных клеток JM109. Приготовление компетентных клеток, трансформацию и анализ клонов E.coli, содержащих рекомбинантную плазмиду p31NC проводят, как описано в примере 4. Одновременно полученные клоны после индукции IPTG анализируют с помощью SDS-электрофореза. ДНК-клоны отбирают по наличию теоретически предсказанных фрагментов и индуцируемого рекомбинантного белка, выделяемого в чистом виде аффинной хроматографией. Окончательную структуру рекомбинантной плазмидной ДНК p31NC подтверждают определением нуклеотидной последовательности в районе встроенного фрагмента, содержащего ген нуклеокапсидного белка. Экспрессию целевого гена проверяют по наличию рекомбинантного белка размером 17 килодальтон, выделяемого с помощью аффинной хроматографии, после индукции IPTG трансформированных целевой плазмидой p31NC клеток E.coli JM109. Таким образом, заявляемое техническое решение позволяет получить экспрессирующую плазмидную ДНК p31NC, кодирующую ген NC-белка вируса РРСС. Пример 6. Полученной плазмидной ДНК p31NC трансформируют компетентные клетки бактерий E. coli JM109 по методу, описанному в примере 4, и получают клетки Е. соli NC109, продуцирующие рекомбинантный полипептид, вызывающий образование вирусспецифических антител. Источники информации, принятые во внимание при составлении описания изобретения к заявке на выдачу патента РФ на “Рекомбинантную плазмидную ДНК p31NC, кодирующую 125 аминокислотный нуклеокапсидный белок вируса репродуктивно-респираторного синдрома свиней и обеспечивающую его экспрессию в клетках бактерий E.coli” 1. Wensvoort G. et.al. Antigenic comparison of Lelystad virus and swine infertility and respiratory syndrome virus. J.Vet. Diangn. Invest., 1992, V. 4, p.134-138. 2. Nelson E. A. et al. Differentiation of US and European Isolates of porcine reproductive and respiratory syndrome virus by monoclonal antibodies. J.Clin. Microbiol., 1993, V.31, N 12, 1-6. Формула изобретения
![]() РИСУНКИ
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 03.03.2007
Извещение опубликовано: 27.01.2008 БИ: 03/2008
|
||||||||||||||||||||||||||