Патент на изобретение №2201916

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2201916 (13) C2
(51) МПК 7
C07C51/12, C07C53/08
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 07.04.2011 – действует

(21), (22) Заявка: 99116370/04, 28.07.1999

(24) Дата начала отсчета срока действия патента:

28.07.1999

(43) Дата публикации заявки: 20.05.2001

(45) Опубликовано: 10.04.2003

(56) Список документов, цитированных в отчете о
поиске:
WO 98/22420 A1, 28.05.1998. EP 0768295 A1, 16.04.1997. EP 0752406 A1, 08.01.1997. RU 2065850 C1, 27.08.1996.

Адрес для переписки:

101000, Москва, М.Златоустинский пер., 10, кв.15, “ЕВРОМАРКПАТ”, пат.пов. И.А.Веселицкой, рег.№ 0011

(71) Заявитель(и):

БП КЕМИКЭЛЗ ЛИМИТЕД (GB)

(72) Автор(ы):

МАСКЕТТ Майкл Джеймс (GB)

(73) Патентообладатель(и):

БП КЕМИКЭЛЗ ЛИМИТЕД (GB)

(74) Патентный поверенный:

Веселицкая Ирина Александровна

(54) СПОСОБ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ


(57) Реферат:

Изобретение относится к получению уксусной кислоты. Метанол и/или его реакционноспособное производное взаимодействует с монооксидом углерода в жидкой реакционной среде в реакторе карбонилирования. Жидкая реакционная смесь содержит в качестве катализатора карбонилирования благородный металл группы VIII, метилиодидный сокатализатор в концентрации по меньшей мере 2 мас.%, необязательно промотор, воду в по меньшей мере ограниченной концентрации, метилацетат в концентрации по меньшей мере 8 мас.% и получаемую уксусную кислоту. Жидкую реакционную смесь отводят из реактора карбонилирования и подают при добавлении или без добавления тепла в по крайней мере одну зону разделения однократным равновесным испарением. Получают паровую фракцию, содержащую воду, уксусную кислоту, метилацетат и метилиодид, и жидкую фракцию, содержащую благородный металл группы VIII и необязательно один промотор. Жидкую фракцию возвращают в реактор карбонилирования. Паровую фракцию вводят в ректификационную колонну легких погонов. Технологический поток, содержащий уксусную кислоту, отводят из ректификационной колонны легких погонов. Из головки ректификационной колонны отводят паровую фракцию, содержащую метилацетат, метилиодид, воду и уксусную кислоту и конденсируют. Сконденсированную паровую фракцию подают в аппарат для декантации, где эта фракция разделяется на верхний (водный) и нижний (органический) слой. Весь или часть верхнего (водного) слоя возвращают в виде флегмы в ректификационную колонну и нижний (органический) слой возвращают в реактор. Способность разделяться на верхний (водный) и нижний (органический) слой в аппарате декантации поддерживают за счет концентрации уксусной кислоты в сконденсированной паровой фракции, равной или ниже 8 мас.%. Технический результат – улучшение технологии процесса. 8 з.п.ф-лы, 2 ил.


Изобретение относится к способу получения уксусной кислоты карбонилированием метанола и/или его реакционноспособного производного в присутствии благородного металла группы VIII как катализатора и гидрокарбилгалогенида в качестве сокатализатора.

Способы получения уксусной кислоты карбонилированием спиртов и/или их реакционноспособных производных, катализируемым благородным металлом группы VIII и сокатализируемым гидрокарбилгалогенидом, в данной области техники хорошо известны. В качестве типичных примеров такого известного в данной области техники применения родия как каталитического благородного металла группы VIII можно упомянуть, в частности, US 3772380, GB 1468940, GB 1538783 и ЕР 0087070. В качестве типичных примеров такого известного в данной области техники применения иридия как каталитического благородного металла группы VIII можно упомянуть, в частности, GB 1234121, US 3772380, DE 1767150, ЕР 0616997, ЕР 0618184, ЕР 0618183 и ЕР 0657386.

В ходе проведения непрерывных жидкофазных процессов получения уксусной кислоты карбонилированием метанола и/или его реакционноспособного производного в присутствии благородного металла группы VIII получаемую уксусную кислоту выделяют из жидкой реакционной смеси и сушат, а остальные компоненты реакционной смеси возвращают в реактор для поддержания в нем их концентрации.

У Howard и др. в Catalysis Today, 18(1993), 325-354, описано катализируемое родием и иридием карбонилирование метанола с превращением в уксусную кислоту. В этой публикации говорится, что способ непрерывного катализируемого родием гомогенного карбонилирования метанола включает три основных зоны: реакционную, очистки и обработки отходящих газов. Реакционная зона включает реактор с мешалкой, работающий при повышенных температуре и давлении, и установку однократного равновесного испарения. Жидкую реакционную смесь из реактора отводят и направляют через клапан однократного равновесного испарения в установку однократного равновесного испарения, в которой большинство более легких компонентов жидкой реакционной смеси (метилиодид, метилацетат и вода) вместе с получаемой уксусной кислотой испаряют. Паровую фракцию далее направляют в зону очистки, в то время как жидкую фракцию (включающую родиевый катализатор в уксусной кислоте) возвращают в реактор (как показано на фиг. 2 в работе Howard и др.). Отмечено, что зона очистки включает первую ректификационную колонну (колонну легких погонов), вторую ректификационную колонну (сушильную колонну) и третью ректификационную колонну (колонну тяжелых погонов) (как показано на фиг. 3 в работе Howard и др.). Из колонны легких погонов в виде верхнего погона удаляют метилиодид и метилацетат вместе с некоторым количеством воды и уксусной кислоты. Пар конденсируют и в аппарате для декантации дают разделиться на две фазы, причем обе фазы возвращают в реактор. Мокрую уксусную кислоту из колонны легких погонов, как правило, удаляют в виде боковой фракции и направляют в сушильную колонну, из которой в виде верхнего погона удаляют воду, а из основания этой ректификационной колонны отводят поток практически сухой уксусной кислоты. На фиг. 3 в работе Howard и др. показано, что поток воды, отводимый в виде верхнего погона из сушильной колонны, возвращают в реакционную зону. Тяжелые жидкие побочные продукты удаляют из основания колонны тяжелых погонов, причем получаемую уксусную кислоту отводят в виде боковой фракции.

На практике верхний слой (водный) из аппарата для декантации в виде флегмы целиком или частично возвращают в колонну легких погонов, а нижний слой (органический) из аппарата для декантации возвращают в реактор. По технологическим причинам фазы в аппарате для декантации строго необходимо поддерживать в разделенном состоянии. Стабильность в аппарате для декантации имеет первостепенное значение для успешного проведения непрерывного процесса карбонилирования. Если в аппарате для декантации образуется одна фаза, изменение конечного состава обусловливает тенденцию к повышению содержания воды в реакторе, что в свою очередь оказывает заметное влияние на реакционную активность катализируемого иридием карбонилирования.

В ЕР 0768295 описан один из способов поддержания раздельными двух фаз в реакторе за счет понижения концентрации воды, содержащейся в жидкой реакционной смеси при карбонилировании, или повышения концентрации метилацетата, содержащегося в жидкой реакционной смеси. Так, в ЕР 0768295 описан способ получения уксусной кислоты непрерывной реакцией по меньшей мере одного из продуктов, выбранных из метанола, метилацетата и диметилового эфира, с монооксидом углерода в присутствии катализатора, содержащего металл группы VIII, метилиодида и воды, включающий (а) стадию, на которой сырую реакционную смесь удаляют со стадии карбонилирования и вводят в зону однократного равновесного испарения, а рецикловую жидкость, содержащую каталитический компонент, который не испаряется в зоне однократного равновесного испарения, возвращают в реактор для карбонилирования, (б) стадию, на которой паровую фракцию, полученную в зоне однократного равновесного испарения, в виде пара или жидкости направляют в первую ректификационную колонну, (в) стадию, на которой из верхней части первой ректификационной колонны отводят рецикловый поток низкокипящих продуктов, включающий воду, метилацетат, метилиодид и уксусную кислоту, и (г) стадию, на которой из основания или в виде боковой фракции вблизи основания первой ректификационной колонны отводят сырую уксусную кислоту. Этот способ отличается тем, что состояние расслоения жидкости в аппарате для декантации при верхней части первой ректификационной колонны поддерживают добавлением в первую ректификационную колонну воды, снижающей температуру охлаждения в головной части этой первой ректификационной колонны или снижающей концентрацию метилацетата, содержащегося в жидкости, направляемой в аппарат для декантации при верхней части первой ректификационной колонны.

В ЕР 0768295 говорится, что когда жидкость в аппарате для декантации не образует две фазы и эту нерасслоившуюся жидкость возвращают в реактор, в получаемой уксусной кислоте происходит накопление до неприемлемого уровня образующихся в качестве побочных продуктов карбонильных соединений, таких как ацетальдегид, кротоновый альдегид и 2-этилкротоновый альдегид, а также органических соединений иода, таких как гексилиодид.

В ЕР 0573189-А1 описан способ получения уксусной кислоты карбонилированием метанола в присутствии родиевого катализатора карбонилирования. В этой публикации говорится, что концентрация метилацетата в жидкой реакционной смеси составляет по меньшей мере 2 мас.%, предпочтительно 2-15 мас.%, более предпочтительно 3-10 мас.%. Хотя в примерах 4 и 5 приводимая расчетная концентрация уксусной кислоты в объединенных потоках головных погонов, образующих рецикловые легкие погоны, составляла 0,96-1,33 мас.%, концентрация метилацетата в реакторах была равной всего 3,1-7,3 мас.%.

При создании настоящего изобретения было установлено, что в случае высокой концентрации метилацетата, обычно 8 мас.% или выше, в жидкой реакционной смеси, находящейся в реакторе для карбонилирования, в частности при низком содержании воды и метилиодида, что, как правило, связывают с применением иридия в качестве катализатора карбонилирования, получение двух раздельных фаз в аппарате для декантации сопряжено с технологическими затруднениями, а это в свою очередь может привести к возникновению с качеством продукта проблем такого типа, о которых идет речь в ЕР 0768295, и проблем с производительностью установки, в значительной мере обусловленных гидравлическими ограничениями как регулировочных клапанов, так и насосов.

В процессе создания настоящего изобретения было установлено, что решить проблему сохранения раздельности двух фаз жидкости в аппарате для декантации непрерывного действия можно за счет регулирования концентрации уксусной кислоты в головной фракции, которую направляют из колонны легких погонов в аппарат для декантации. В ЕР 0768295 какие-либо упоминания о концентрации уксусной кислоты в головной фракции и ее влиянии на сохранность двух фаз отсутствуют. В экспериментах, проведенных в автономных условиях при создании настоящего изобретения, было установлено, что типичный материал, направляемый в аппарат для декантации, при наличии примерно 14 мас.% или более уксусной кислоты обычно образует единственную фазу. Однако в аппарате для декантации непрерывного действия для поддержания стабильности процесса необходимо добиваться более низкого содержания уксусной кислоты (8 мас.% или менее). Это обусловлено повышением содержания воды в органической фазе, которое обедняет водой головные фракции колонны легких погонов вследствие ее возврата непосредственно в реактор. Это вызывает падение концентрации воды, и разделение на фазы становится более затруднительным. В этом случае механизм возврата в процесс превращается в превалирующий, а аппарат для декантации становится однофазным.

Таким образом, в настоящем изобретении предлагается способ непрерывного получения уксусной кислоты карбонилированием метанола и/или его реакционноспособного производного, включающий следующие стадии:
(I) подачу метанола и/или его реакционноспособного производного в реактор для карбонилирования, в котором метанол и/или его реакционноспособное производное в жидкой реакционной смеси взаимодействует с монооксидом углерода, причем эта жидкая реакционная смесь содержит в качестве катализатора карбонилирования благородный металл группы VIII, метилиодидный сокатализатор в концентрации по меньшей мере 2 мас.%, необязательно по меньшей мере один промотор, воду в по меньшей мере ограниченной концентрации, метилацетат в концентрации по меньшей мере 8 мас.% и получаемую уксусную кислоту,
(II) отвод жидкой реакционной смеси из реактора для карбонилирования и подачу отведенной жидкой реакционной смеси при добавлении или без добавления тепла в по крайней мере одну зону разделения однократным равновесным испарением с получением паровой фракции, содержащей воду, получаемую уксусную кислоту, метилацетат и метилиодид, и жидкой фракции, содержащей в качестве катализатора карбонилирования благородный металл группы VIII и необязательно по меньшей мере один промотор,
(III) возврат жидкой фракции со стадии (II) в реактор для карбонилирования,
(IV) введение паровой фракции со стадии (II) в ректификационную колонну легких погонов,
(V) отвод из ректификационной колонны легких погонов технологического потока, содержащего получаемую уксусную кислоту,
(VI) отвод из головки ректификационной колонны легких погонов паровой фракции, содержащей метилацетат, метилиодид, воду и уксусную кислоту,
(VII) конденсацию паровой головной фракции со стадии (VI),
(VIII) подачу сконденсированной паровой головной фракции со стадии (VII) в аппарат для декантации, в котором эта фракция разделяется на верхний слой (водный) и нижний слой (органический),
(IX) возврат всего или части верхнего (водного) слоя, выделенного на стадии (VIII), в виде флегмы в ректификационную колонну легких погонов и всего или части нижнего (органического) слоя, выделенного на стадии (VIII), в реактор.

Этот способ отличается тем, что способности разделяться верхнего (водного) слоя и нижнего (органического) слоя в аппарате для декантации на стадии (VIII) достигают поддержанием концентрации уксусной кислоты в сконденсированной паровой головной фракции, направляемой в аппарат для декантации, на уровне или ниже 8 мас.%.

В предпочтительном варианте концентрацию уксусной кислоты в сконденсированной паровой фракции, направляемой в аппарат для декантации, поддерживают на уровне ниже 8 мас.%, предпочтительно ниже 6 мас.%, более предпочтительно ниже 5 мас.%. Поддержание концентрации уксусной кислоты в сконденсированной паровой фракции в указанных интервалах в значительной мере обеспечивают соответствующим рабочим режимом ректификационной колонны легких погонов. Так, например, коэффициент обратного потока в колонне и/или число теоретических ступеней в этой колонне выбирают таким образом, чтобы концентрация уксусной кислоты в сконденсированной паровой фракции составляла 8 мас.% или ниже.

Как правило, ректификационная колонна легких фракций включает относительно небольшое число теоретических ступеней (всего примерно 10). Было установлено, что для практического сохранения двух жидких фаз в промышленной установке, работающей с примерно 10 теоретическими ступенями над точкой ввода исходного материала, в колонну в качестве флегмы необходимо обратно возвращать всю водную фазу. В предпочтительном варианте колонна легких фракций над точкой ввода исходного материала включает более 10, более предпочтительно 15 или более теоретических ступеней. Увеличение числа теоретических ступеней позволяет уменьшить коэффициенты обратного потока, которые необходимо использовать, что создает преимущество в отношении эффективности удаления воды и, следовательно, уменьшает затраты на очистку.

Другая модификация, которая в аппарате для декантации позволяет поддерживать концентрацию уксусной кислоты в вышеприведенных пределах, состоит в придании всем рецикловым потокам, обладающим высоким содержанием уксусной кислоты, которые иначе (в первоначальном варианте) могли бы подаваться на конденсацию и, таким образом, попадать непосредственно в аппарат для декантации, нового направления движения, в ректификационную колонну легких фракций, в которую они поступают в точке, близкой к точке ввода паровой фракции со стадии (II), благодаря чему создается возможность для выделения уксусной кислоты, содержащейся в рецикловом потоке, из этого потока на ступенях, находящихся над точкой ввода исходного материала. Таким рецикловым потоком может служить, например, возвращаемый поток паров из зоны обработки отходящих газов в этом процессе.

Что касается собственно аппарата для декантации, то в обычной конструкции установок для карбонилирования метанола предусмотрено наличие колпачка, который принимает форму короткой вертикальной цилиндрической секции, зависящей от горизонтальной цилиндрической секции. Это составляет стандартную конструкционную особенность систем, в которых либо низок объемный расход тяжелой фазы, либо плотность тяжелой фазы очень высока, и поэтому необходимо свести к минимальному количество тяжелой фазы. Было установлено, что в превалирующих при осуществлении способа по настоящему изобретению условиях относительно высокой концентрации метилацетата колпачок, который обычно предусмотрен в конструкции аппарата для декантации, можно исключить. Преимущество удаления этого колпачка из аппарата для декантации состоит в снижении капитальных затрат благодаря упрощению технологии изготовления аппарата для декантации. Это также исключает возможность ухудшенного разделения, обусловленного турбулентностью в колпачке, вызванной большим объемным расходом.

В предпочтительном варианте аппарат для декантации дополнительно включает блок сепараторных пластин, которые имеются в продаже (например, поставляются фирмой Natco, Талса, шт. Оклахома), что необходимо для повышения скорости разделения на фазы. Этот блок сепараторных пластин обычно включает комплекты наклонных рифленых пластин, которые инициируют коалесценцию и сокращают требуемое время пребывания в аппарате для декантации. Преимущество установки блока сепараторных пластин заключается в том, что он позволяет использовать более малогабаритные аппараты для декантации. В свою очередь это обусловливает преимущество, состоящее в том, что, если аппарат для декантации становится однофазным, нежелательное влияние повышения содержания воды в реакторе, о чем речь шла выше, сводится к минимальному.

На стадии (I) способа по настоящему изобретению в реактор для карбонилирования вводят метанол и/или его реакционноспособное производное. Приемлемые реакционноспособные производные метанола включают метилацетат и диметиловый эфир.

В жидкой реакционной смеси в реакторе для карбонилирования метанол и/или его реакционноспособное производное взаимодействует с монооксидом углерода. Можно использовать практически чистый монооксид углерода или содержащий инертные примеси, такие как диоксид углерода, метан, азот, инертные газы, воду и парафиновые С1-C4углеводороды. В предпочтительном варианте концентрацию водорода, содержащегося в исходном монооксиде углерода и выделяющегося in situ в результате реакции конверсии водяного газа, поддерживают на низком уровне, поскольку его присутствие может привести к образованию продуктов гидрогенизации. Таким образом, предпочтительное количество водорода в монооксиде углерода как реагенте составляет менее 1 мол.%, более предпочтительно менее 0,5 мол.%, наиболее предпочтительно менее 0,3 мол.% и/или предпочтительное парциальное давление водорода в реакторе для карбонилирования составляет менее 1 бар, более предпочтительно менее 0,5 бар, наиболее предпочтительно менее 0,3 бар. Приемлемое парциальное давление монооксида углерода в реакторе находится в интервале от более 0 до 40 бар, как правило, 4-30 бар.

Жидкая реакционная смесь в реакторе включает благородный металл группы VIII как катализатор карбонилирования, метилиодидный сокатализатор, необязательно по меньшей мере один промотор, воду в по крайней мере ограниченной концентрации, метилацетат в концентрации не менее 8 мас.% и получаемую уксусную кислоту.

Из благородных металлов группы VIII предпочтительны родий и иридий. Катализатор на основе благородного металла может включать любое металлсодержащее соединение, которое растворимо в жидкой реакционной смеси. Металлсодержащий катализатор можно вводить в жидкую реакционную смесь в любой приемлемой форме, в которой он растворяется в жидкой реакционной смеси или способен в ней переходить в растворимую форму. Приемлемые соединения описаны в вышеупомянутых патентных публикациях, относящихся к процессам карбонилирования, катализируемым иридием и родием. Как правило, можно применять карбонильные комплексы, галогенидные соли и ацетатные соли этих металлов. Родий может содержаться в количестве 50-5000 част./млн, предпочтительно 100-1500 част. /млн. Иридий может содержаться в количестве 100-6000 част./млн, предпочтительно 400-3000 част./млн.

В качестве сокатализатора используют метилиодид. Приемлемое содержание метилиодида в жидкой реакционной смеси может находиться в интервале 2-20 мас.%, предпочтительно 4-16 мас.%.

Выбор промотора, когда он присутствует в жидкой реакционной смеси, в определенной степени зависит от природы катализатора на основе благородного металла группы VIII. В случае использования иридия в качестве катализатора карбонилирования приемлемый необязательный промотор представляет собой металл, выбранный из группы, включающей рутений, осмий, кадмий, рений, ртуть, галлий, индий, вольфрам и их смеси, предпочтительно рутений или осмий. Приемлемое молярное соотношение промотор/иридий составляет [0,5-15]:1. Когда в качестве катализатора карбонилирования используют родий, приемлемый необязательный промотор выбирают из группы, включающей иодидные соли щелочных и щелочно-земельных металлов, например, иодид лития, иодиды четвертичного аммония и иодиды четвертичного фосфония. Приемлемый необязательный промотор может содержаться в количестве вплоть до предела его растворимости.

Независимо от используемого в качестве катализатора карбонилирования благородного металла группы VIII жидкая реакционная смесь в реакторе для карбонилирования содержит воду в по меньшей мере ограниченной концентрации. Однако содержание воды может варьироваться в зависимости от используемого в качестве катализатора карбонилирования благородного металла группы VIII. Обычно в случае родия вода может содержаться в количестве 0,1-30 мас.%, предпочтительно 1-15 мас.%. В случае иридия вода может содержаться в количестве 0,1-10 мас.%, предпочтительно 1-6,5 мас.%.

Независимо от того, вводят или не вводят метилацетат в реактор для карбонилирования, он неизбежно присутствует в жидкой реакционной смеси как следствие взаимодействия метанола и/или его реакционноспособного производного с уксусной кислотой, получаемой как продукт карбонилирования, и/или с растворителем для карбонилирования. В соответствии с объемом настоящего изобретения метилацетат присутствует в жидкой реакционной смеси в количестве 8 мас.% или более, обычно 8-50 мас.%, предпочтительно 8-35 мас.%. Как правило, эти интервалы концентрации метилацетата являются теми, которые связаны с иридием как благородным металлом группы VIII в качестве катализатора, а концентрация метилацетата при применении родиевого катализатора обычно, но необязательно составляет самое большее 5 мас.%, как правило, менее приблизительно 3 мас.%.

Оставшаяся часть жидкой реакционной смеси включает уксусную кислоту.

В ходе проведения реакции карбонилирования приемлемая температура находится в интервале 100-300oС, предпочтительно 150-220oС. Общее приемлемое манометрическое давление в реакторе для карбонилирования находится в интервале 10-200 бар, предпочтительно 15-100 бар, более предпочтительно 15-50 бар.

На стадии (II) способа по настоящему изобретению из реактора для карбонилирования отводят жидкую реакционную смесь и при добавлении или без добавления тепла вводят в по меньшей мере одну зону однократного равновесного испарения с получением паровой фракции, содержащей воду, получаемую уксусную кислоту, метилацетат и метилиодид, и жидкой фракции, в качестве катализатора карбонилирования содержащей благородный металл группы VIII и необязательно по меньшей мере один промотор. В случае единственной стадии однократного равновесного испарения создаваемое манометрическое давление может составлять 0-3 бар, а приемлемая температура может находиться в интервале 100-150oС. В случае двухстадийного однократного равновесного испарения приемлемое манометрическое давление в первой зоне может находиться в интервале 1-10 бар, а манометрическое давление во второй зоне может составлять 0-5 бар.

На стадии (III) способа жидкую фракцию, выделенную из зоны однократного равновесного испарения на стадии (II), возвращают в реактор для карбонилирования.

На стадии (IV) способа паровую фракцию, выделенную из зоны однократного равновесного испарения на стадии (II), вводят в ректификационную колонну легких погонов. Приемлемая ректификационная колонна легких погонов включает до 40 теоретических ступеней. Эта колонна может работать под любым приемлемым давлением, например под манометрическим давлением в головке примерно 1,2 бар и под манометрическим давлением в основании примерно 1,5 бар. Рабочая температура в ректификационной колонне легких погонов обычно зависит от ряда факторов, включая состав сырья, головных и концевых фракций и рабочее давление. Типичная температура в основании может находиться в интервале 125-140oС, а типичная температура в головке может составлять 105-115oС.

На стадии (V) способа из ректификационной колонны легких погонов отводят поток, содержащий получаемую уксусную кислоту. Этот технологический поток можно отводить в любой приемлемой точке, например в точке, находящейся выше или ниже точки ввода исходного материала, или в виде жидкости или пара из основания колонны. Далее отводимый из ректификационной колонны легких погонов технологический поток, содержащий получаемую уксусную кислоту, можно сушить, например, в сушильной ректификационной колонне, причем выделенную воду целесообразно возвращать в реактор для карбонилирования или удалять из процесса. Затем высушенную уксусную кислоту можно направлять в ректификационную колонну тяжелых погонов, в которой из сухой уксусной кислоты как побочный продукт выделяют пропионовую кислоту.

На стадии (VI) способа из головки ректификационной колонны легких погонов отводят паровую фракцию, содержащую метилацетат, метилиодид, воду и уксусную кислоту.

На стадии (VII) способа конденсируют паровой головной погон со стадии (VI).

На стадии (VIII) способа сконденсированный головной погон, отводимый со стадии (VII), направляют в аппарат для декантации, в котором эта фракция разделяется на верхний слой (водный) и нижний слой (органический).

В завершение на стадии (IX) способа верхний (водный) слой, выделенный на стадии (VIII), целиком или частично возвращают в виде флегмы в ректификационную колонну легких погонов, а нижний (органический) слой, выделенный на стадии (VIII), целиком или частично, предпочтительно целиком, возвращают в реактор. Верхний (водный) слой целесообразно частично возвращать в ректификационную колонну легких погонов в виде флегмы, целесообразно при расходе потока от примерно 0,1 до примерно 0,7 от расхода потока паровой фракции, отводимой из головки ректификационной колонны легких погонов.

Ниже изобретение дополнительно проиллюстрировано со ссылкой на пример и чертежи, где на фиг. 1 представлен график концентраций компонентов в верхней (водной) фазе легких головных погонов аппарата для декантации в ходе проведения непрерывного процесса карбонилирования, а на фиг. 2 представлен график соответствующей скорости карбонилирования.

Пример
Метанол непрерывно подавали в реактор для карбонилирования, в котором поддерживали определенный состав жидкой реакционной смеси, включавшей иридиевый катализатор карбонилирования, 5 мас.% воды, 7 мас.% метилиодида, 15 мас.% метилацетата и в качестве остальной части этой смеси уксусную кислоту. В реактор вводили также монооксид углерода. Скорость карбонилирования составляла примерно 17,5 мол./л/ч.

Жидкую реакционную смесь отводили из реактора для карбонилирования и вводили в зону разделения однократным равновесным испарением, в которой получали паровую фракцию, содержавшую воду, получаемую уксусную кислоту, метилацетат и метилиодид, и жидкую фракцию, содержавшую иридиевый катализатор карбонилирования.

Жидкую фракцию, отводимую из зоны разделения однократным равновесным испарением, возвращали в реактор для карбонилирования.

Паровую фракцию из зоны разделения однократным равновесным испарением вводили в комбинированную колонну легких погонов/сушки. Из головки этой комбинированной колонны отводили паровую фракцию, содержавшую метилацетат, метилиодид, воду и уксусную кислоту. Паровую фракцию конденсировали и направляли в аппарат для декантации. Комбинированная колонна работала таким образом, что уксусная кислота, находившаяся в сконденсированной паровой головной фракции, поступала в аппарат для декантации в концентрации 8 мас.% или ниже.

В аппарате для декантации эта сконденсированная паровая головная фракция разделялась на верхний слой (водный) и нижний слой (органический). Верхний (водный) слой из аппарата для декантации удаляли и в виде флегмы возвращали в комбинированную колонну. Нижний (органический) слой отводили из аппарата для декантации и возвращали в реактор.

Из комбинированной колонны легких погонов/сушки отводили также технологический поток, включавший получаемую уксусную кислоту.

Работу в описанном выше режиме поддерживали в течение примерно 18 ч. В течение этого периода достигали стабильной работы аппарата для декантации, как это показано на фиг. 1, на которой представлена зависимость состава верхнего (водного) слоя в аппарате для декантации от времени. В течение этого периода поддерживали довольно постоянную скорость карбонилирования при среднем значении примерно 17,5 моль/л/ч, как показано на фиг. 2, на которой представлена зависимость скорости карбонилирования от времени.

Сравнительное испытание
По прошествии примерно 18 ч режим работы колонны легких погонов/сушки изменяли таким образом, чтобы концентрация уксусной кислоты в сконденсированной паровой головной фракции, направляемой в аппарат для декантации, превышала 8 мас.%. Это вызывало быстрый переход режима работы аппарата для декантации в однофазный с таким влиянием на концентрацию компонентов жидкости в аппарате для декантации, который показан на фиг. 1. Очевидно, что концентрация воды резко падала при соответствующем повышении концентрации уксусной кислоты, что также справедливо и для концентрации метилиодида и метилацетата.

В результате изменения рабочих условий в аппарате для декантации и колонне в жидкой реакционной смеси в реакторе для карбонилирования концентрация воды возрастала до примерно 11 мас.%, а концентрация метилиодида падала до примерно 3 маc.%. Эти изменения сопровождались заметным снижением скорости карбонилирования до среднего значения примерно 8 моль/л/ч с сохранением концентрации метилацетата на уровне 15 мас.%, как показано на фиг. 2.

Этот пример не соответствует настоящему изобретению и включен в описание только в сравнительных целях.

Формула изобретения


1. Способ непрерывного получения уксусной кислоты карбонилированием метанола и/или его реакционноспособного производного, включающий следующие стадии: (I) подачу метанола и/или его реакционноспособного производного в реактор для карбонилирования, в котором метанол и/или его реакционноспособное производное в жидкой реакционной смеси взаимодействует с монооксидом углерода, причем эта жидкая реакционная смесь содержит в качестве катализатора карбонилирования благородный металл группы VIII, метилиодидный сокатализатор в концентрации по меньшей мере 2 мас.%, необязательно по меньшей мере один промотор, воду в по меньшей мере ограниченной концентрации, метилацетат в концентрации по меньшей мере 8 мас.% и получаемую уксусную кислоту, (II) отвод жидкой реакционной смеси из реактора для карбонилирования и подачу отведенной жидкой реакционной смеси при добавлении или без добавления тепла в по крайней мере одну зону разделения однократным равновесным испарением с получением паровой фракции, содержащей воду, получаемую уксусную кислоту, метилацетат и метилиодид, и жидкой фракции, содержащей в качестве катализатора карбонилирования благородный металл группы VIII и необязательно по меньшей мере один промотор, (III) возврат жидкой фракции со стадии (II) в реактор для карбонилирования, (IV) введение паровой фракции со стадии (II) в ректификационную колонну легких погонов, (V) отвод из ректификационной колонны легких погонов технологического потока, содержащего получаемую уксусную кислоту, (VI) отвод из головки ректификационной колонны легких погонов паровой фракции, содержащей метилацетат, метилиодид, воду и уксусную кислоту, (VII) конденсацию паровой головной фракции со стадии (VI), (VIII) подачу сконденсированной паровой головной фракции со стадии (VII) в аппарат для декантации, в котором эта фракция разделяется на верхний слой (водный) и нижний слой (органический), (IX) возврат всего или части верхнего (водного) слоя, выделенного на стадии (VIII), в виде флегмы в ректификационную колонну легких погонов и всего или части нижнего (органического) слоя, выделенного на стадии (VIII), в реактор, отличающийся тем, что способности разделяться верхнего (водного) слоя и нижнего (органического) слоя в аппарате для декантации на стадии (VIII) достигают поддержанием концентрации уксусной кислоты в сконденсированной паровой головной фракции, направляемой в аппарат для декантации, на уровне или ниже 8 мас.%.

2. Способ по п.1, отличающийся тем, что катализатор карбонилирования на основе благородного металла группы VIII представляет собой иридиевый катализатор карбонилирования.

3. Способ по п. 2, отличающийся тем, что промотор выбирают из группы, включающей рутений, осмий, кадмий, рений, ртуть, галлий, индий, вольфрам и их смеси.

4. Способ по п.2 или 3, отличающийся тем, что концентрация метилацетата в жидкой реакционной смеси составляет 8-50 мас.%, предпочтительно 8-35 мас. %.

5. Способ по любому из предыдущих пунктов, отличающийся тем, что концентрация метилиодида в жидкой реакционной смеси составляет 2-20 мас.%, предпочтительно 4-16 мас.%.

6. Способ по любому из предыдущих пунктов, отличающийся тем, что ректификационная колонна легких фракций включает более 10, более предпочтительно 15 или больше теоретических ступеней над точкой ввода сырья.

7. Способ по любому из предыдущих пунктов, отличающийся тем, что рецикловые потоки с существенным содержанием уксусной кислоты вводят в ректификационную колонну легких фракций в точке, находящейся вблизи точки ввода паровой фракции со стадии (II).

8. Способ по любому из предыдущих пунктов, отличающийся тем, что в качестве аппарата для декантации применяют бесколпачковый аппарат.

9. Способ по любому из предыдущих пунктов, отличающийся тем, что аппарат для декантации включает блок сепараторных пластин.

РИСУНКИ

Рисунок 1, Рисунок 2

Categories: BD_2201000-2201999