Патент на изобретение №2199807
|
||||||||||||||||||||||||||
(54) СПОСОБ ВЫЯВЛЕНИЯ АСИНХРОННОГО РЕЖИМА
(57) Реферат: Изобретение относится к электротехнике и может быть использовано в средствах противоаварийной автоматики энергосистем. Технический результат заключается в повышении селективности выявления асинхронных режимов в современных энергосистемах. Для этого в способе выявления асинхронного режима в энергосистеме по результатам измерений токов и напряжений на одном из концов линии электропередачи определяют знаки относительного угла между напряжениями, расположенными по концам защищаемого участка линии электропередачи, и знаки его первой и второй производных по времени, определяют реактивное сопротивление ХMIN от точки измерения до точки с минимальным напряжением и знак производной по времени активной мощности, передаваемой по линии электропередачи, и фиксируют начало асинхронного режима, если точка минимального напряжения расположена в пределах защищаемого участка линии электропередачи и знаки относительного угла и его первой и второй производных совпадают, а знак производной по времени активной мощности противоположен им, при этом проверка наличия на контролируемой линии точки с минимальным напряжением заключается в проверке условия 0<ХMIN<ХЛ, где ХЛ – реактивное сопротивление линии электропередачи. 2 ил. Изобретение относится к области электротехники и, в частности, к средствам противоаварийной автоматики энергосистем. Известно, что возникающий при нарушении устойчивости асинхронный режим представляет серьезную опасность для энергосистемы в плане возможного дальнейшего развития аварии. Для устранения и предотвращения развития асинхронных режимов в энергосистемах используется автоматика ликвидации асинхронного режима (АЛАР), являющаяся частью противоаварийной автоматики энергосистем. Основная задача этих устройств – выявление факта возникновения асинхронного режима и формирование команды на его ликвидацию, которая, как правило, реализуется путем деления энергосистемы. Известны способы (аналоги), использующие для выявления асинхронного режима факт наличия колебаний заданной величины одного или нескольких режимных параметров электропередачи, на которой фиксируется асинхронный режим [1] . В качестве таких режимных параметров используются: напряжение в некоторой, заранее выбранной точке электропередачи, ток электропередачи, сопротивление на зажимах реле сопротивления, угол между напряжением и током, активная и реактивная мощности в некоторой, заранее выбранной точке электропередачи. Фиксация колебаний осуществляется по факту неоднократного достижения контролируемым режимным параметром максимального и минимального значений, заданных в качестве уставок. Известен способ выявления асинхронного режима (прототип), заключающийся в том, что по результатам измерений напряжения и тока электропередачи в некоторой заранее заданной точке, в темпе аварийного процесса рассчитывается относительный угол между векторами напряжений в двух других точках электропередачи, удаленных от точки измерения, и если рассчитанный угол превысит заданную уставку, то фиксируется возникновение асинхронного режима [1]. Основными недостатками перечисленных способов является их низкая селективность работы в условиях современных многосвязных энергосистем. Это объясняется тем, что для практической работы устройств, реализующих упомянутые способы, необходимо задание уставок, которые предварительно должны быть получены в результате расчетов аварийных процессов, приводящих к асинхронному режиму. Уставки должны быть выбраны таким образом, чтобы устройства срабатывали при всех асинхронных режимах по контролируемой связи вне зависимости от вида и места аварийного возмущения и предаварийного режима энергосистемы. И в то же время они не должны срабатывать при синхронных качаниях и асинхронных режимах по смежным связям. В условиях современных сложных энергосистем подобная задача выбора и согласования уставок устройств АЛАР является непростой, требующей проведения множества расчетов и не всегда удовлетворительно решаемой. По статистике работы устройств АЛАР в ЕЭС России около половины их срабатываний – ложные. Целью предлагаемого изобретения является повышение селективности выявления асинхронных режимов в современных энергосистемах. Указанная цель достигается тем, что по результатам измерений токов и напряжений на одном из концов линии электропередачи определяют знаки относительного угла между напряжениями, расположенными по концам защищаемого участка линии электропередачи и его первой и второй производных по времени, определяют реактивное сопротивление XMIN от точки измерения до точки с минимальным напряжением и знак производной по времени активной мощности, передаваемой по линии электропередачи, и фиксируют начало асинхронного режима, если соблюдается условие: 0 ![]() где xЛ – реактивное сопротивление линии электропередачи и знаки относительного угла и его первой и второй производных совпадают, а знак производной по времени активной мощности противоположен им. Эффективность и работоспособность этого способа может быть обоснована следующими соображениями. Движение энергосистемы в начальной фазе переходного процесса, переходящего в асинхронный режим, практически всегда может быть представлено как движение двух эквивалентных генераторов двухмашинной энергосистемы. В этой схеме движение эквивалентных генераторов избыточной (1) и дефицитной (2) частей энергосистемы описывается уравнениями: ![]() где TJ1, ТJ2 – постоянные инерции эквивалентных генераторов 1 и 2; ![]() ![]() PT1, РT2 – механические мощности приводных двигателей эквивалентных генераторов 1 и 2; Р11, P22 – собственные электромагнитные мощности эквивалентных генераторов 1 и 2; P12 – взаимная электромагнитная мощность эквивалентных генераторов 1 и 2; ![]() ![]() ![]() ![]() ![]() Уравнение (2) дает возможность получить качественную характеристику изменения относительного угла между эквивалентными генераторами энергосистемы в начальной фазе возникновения асинхронного режима. На фиг. 1 представлена диаграмма, на которой совмещены моментно-угловая характеристика и осциллограмма изменения относительного угла в начальной фазе асинхронного проворота. Из чертежа можно определить момент времени начала асинхронного режима. Этот момент времени, обозначенный на фиг.1 как tКР, соответствует такому состоянию схемы, когда ![]() ![]() ![]() ![]() ![]() ![]() Действительно, как уже упоминалось, выполнение двух первых неравенств имеет место, когда система находится в начальной стадии асинхронного проворота. Однако положительность первой и второй производных ![]() ![]() ![]() где ![]() ![]() При реализации предлагаемого способа с использованием современной цифровой техники для вычисления используемых в условиях (5, 6) режимных параметров на основе измерений токов и напряжений контролируемой линии электропередачи могут быть использованы соотношения, представленные ниже. В этих соотношениях предполагается, что после первичной обработки измеряемые токи и напряжения на одном из концов контролируемой линии представляются в виде: ![]() где UR, Uj, Ir, Ij – коэффициенты Фурье для первой гармоники измеряемых напряжений и токов. Для простоты выкладок контролируемая линия представляется только реактивным сопротивлением. В этом случае реактивное сопротивление контролируемой линии электропередачи, ХЛ – единственная уставка, которую необходимо задать. Вектор напряжения на противоположном конце линии, ![]() ![]() где ![]() ![]() ![]() ![]() ![]() где вектор ![]() ![]() (Надежное получение знаков первой и второй производных угла ![]() ХMIN=QH/I2, где QH – реактивная мощность, передаваемая по линии электропередачи в точке измерения, определяется из соотношения: ![]() ![]() ![]() Проверка наличия на контролируемой линии точки с минимальным напряжением заключается в проверке условия: 0 ![]() ![]() При оснащении всех линий электропередачи энергосистемы устройствами, реализующими предлагаемый способ, в случае возникновения асинхронного режима выявлять его будут только те устройства, которые расположены на линиях электропередачи, через которые проходит электрический центр качаний. Оценка достоверности этого утверждения проводилась на математических моделях двух энергосистем. В одной из них математические модели устройств, реализующих предлагаемый способ, были установлены на всех линиях электропередачи сети 500 кВ (48 линий). Во второй энергосистеме устройства устанавливались на линиях электропередачи 330 кВ (26 линий). В обеих энергосистемах рассчитывались переходные процессы, вызванные аварийными возмущениями в различных точках сети. В части рассмотренных процессов в энергосистемах сохранялась устойчивость. В части процессов возникали асинхронные режимы с разделением энергосистем на разные части. Проведенные расчеты показали, что во всех рассмотренных аварийных процессах выявление асинхронных режимов производилось только в том случае, если асинхронный режим действительно возникал и только на тех линиях электропередачи, на которых располагался электрический центр качаний. Ложных или избыточных срабатываний как в устойчивых переходных процессах, так и при возникновении асинхронного режима на смежных связях зафиксировано не было. Выявление асинхронных режимов происходило в начальной фазе аварийного процесса до появления асинхронных проворотов. При разделении энергосистемы на части, связанные между собой несколькими связями, удаленными друг от друга, выявление асинхронных режимов на этих связях происходило практически одновременно. Источник информации 1. Гоник Я.Е., Иглицкий Е.С. Автоматика ликвидации асинхронного режима. – М.: Энергоатомиздат, 1988. Формула изобретения
РИСУНКИ
|
||||||||||||||||||||||||||