Патент на изобретение №2193739
|
||||||||||||||||||||||||||
(54) СПОСОБ РАБОТЫ ОХЛАЖДАЮЩЕГО УСТРОЙСТВА И ОХЛАЖДАЮЩЕЕ УСТРОЙСТВО
(57) Реферат: Изобретение относится к холодильной технике. Поток сжатого газа охлаждают в теплообменнике, затем расширяют в двухпоточной вихревой трубе, причем ее горячий поток подается на вход прямого потока рекуперативного теплообменника, а холодный – на вход его обратного потока. В результате удается повысить эффективность охлаждения, при этом теплообменник работает при пониженных давлениях, что упрощает и удешевляет конструкцию. 2 с. и 6 з.п. ф-лы, 7 ил. Изобретение относится к области создания охлаждающих и ожижающих устройств, работающих на использовании свойств расширяющегося газового потока. Известен способ работы охлаждающего устройства, включающий разделение потока газа на два потока, один из которых подается в теплообменник, а другой – в расширитель для отбора части энергии сжатого газа. Такой способ реализуется в конструкции, описанной в [1, рис.36, с.68]. При этом известное охлаждающее устройство содержит разделитель потока газа, расширитель, теплообменник, дроссель и холодоприемник. В качестве расширителя используется или обычный дроссель, или детандер. Чаще всего в качестве расширителя используется детандер, имеющий наиболее высокую эффективность. Но его применение в простых охлаждающих устройствах ограничено высокой стоимостью и сложностью в эксплуатации. Поэтому в такой ситуации в качестве расширителя применяется обычный дроссель. Однако он имеет малую эффективность, что является недостатком. Кроме того, известное охлаждающее устройство с дроссельным расширителем имеет громоздкий рекуперативный теплообменник, что также является недостатком. Целью изобретения является устранение указанных недостатков, т.е. изобретение позволяет повысить эффективность охлаждения и упростить конструкцию. Указанная цель достигается тем, что в разделителе потока газ, поступающий в исходном термодинамическом состоянии, разделяется на горячий и холодный потоки. Горячий поток подают на вход прямого потока теплообменника, а холодный поток вихревой трубы подают на вход обратного потока или на выход прямого потока рекуперативного теплообменника. При этом горячий поток перед подачей в теплообменник предварительно выхолаживают. Для реализации предлагаемого способа разделитель потока газа выполняется в виде двухпоточной вихревой трубы [2], горячий поток которой подключается к входу прямого потока теплообменника. Холодный конец такой вихревой трубы подключается или к выходу прямого потока, или к входу обратного потока рекуперативного теплообменника. При этом между горячим концом вихревой трубы и входом прямого потока рекуперативного теплообменника включается теплообменник наружного теплообмена. Или же горячий конец вихревой трубы подключается к входному патрубку прямого потока рекуперативного теплообменника через тройник, связанный с источником газа, имеющим температуру более низкую, чем температура горячего потока вихревой трубы. Предлагаемый способ работы устройства для охлаждения реализуется в конструкции, изображенной на фиг. 1-7. Устроена предлагаемая конструкция следующим образом (фиг.1). Входной патрубок 1 соединен с входом 2 разделителя потока рабочей среды, выполненным в виде двухпоточной вихревой трубы 3. Горячий конец 4 двухпоточной вихревой трубы 3 подключен к входу 5 прямого потока 6 рекуперативного теплообменника 7. Выход 8 прямого потока 6 теплообменника 7 посредством трубопровода 9 соединен с дросселем 10. Выход 11 дросселя 10 является входом холодоприемника (блока сжижения) 12. Сливной патрубок 13 холодоприемника перекрыт вентилем (на чертежах не показан). Выход 14 холодоприемника 12 с помощью трубопровода 15 и смесителя (тройника) 16 присоединен ко входу 17 обратного потока 18 теплообменника 7. К этому же смесителю (тройнику) 16 с помощью трубопровода 19 присоединен холодный конец 20 вихревой трубы 3. Выход 21 обратного потока 18 теплообменника 7 с помощью трубопровода 22 подсоединен к выходному патрубку 23 охлаждающего устройства. Горячий конец 4 вихревой трубы 3 присоединен к входному патрубку 5 прямого потока 6 теплообменника 7 с помощью трубопровода 24. Горячий конец 4 может соединяться с входным патрубком 5 теплообменника через трубопровод 24 и теплообменник наружного теплообмена 25 (фиг.2). Входной патрубок 1 охлаждающего устройства может дополнительно соединяться с входным патрубком 5 теплообменника 7, минуя вихревую трубу 3, с помощью тройника-разделителя 26 (фиг.3), вентиля-регулятора 27, дросселя 28, трубопровода 29 и тройника-смесителя 30. Холодный патрубок 20 вихревой трубы 3 может соединяться или (фиг. 1-3, 5) с входным патрубком 17 обратного потока 18 теплообменника 7 и с выходным патрубком 14 холодоприемника 12 через тройник-смеситель 16, или (фиг. 4, 6 и 7) с выходным патрубком 8 прямого потока 6 теплообменника 7 и с дросселем 10 через тройник-смеситель 31. В зависимости от поставленной задачи рекуперативный теплообменник во всех рассматриваемых конструкциях может состоять или из одной части 7 (фиг. 1-4 и 7), или из двух частей 7 и 32 (фиг. 5 и 6). Рассматриваемое устройство для реализации предлагаемого способа работает следующим образом (см фиг.1). Поступающее через входной патрубок 1 в исходном термодинамическом состоянии рабочее тело (сжатый газ) в разделителе потоков – вихревой трубе 3 разделяется на два потока 33 и 34. При этом в вихревой трубе в процессе интенсивного вращения входящего потока 2 происходит энергоразделение упомянутых потоков, в результате образуется выходной горячий поток 33 и холодный поток 34, имеющие существенно разные температуры. Холодный поток газа 34 вихревой трубы 3 по трубопроводу 19 поступает в смеситель (тройник) 16, а горячий 33 по трубопроводу 24 – в патрубок 5 теплообменника 7. Сюда же в тройник 16 из трубопровода 15 подается холодный обратный поток из холодоприемника 12. Смешанный холодный обратный поток 18 в теплообменнике 7 (составленный из холодного потока 34 вихревой трубы и обратного холодного потока 14, возвращаемого из холодоприемника 12) подогревается, выхолаживая теплый прямой поток 6, и поступает в выхлопной трубопровод 22, из которого через патрубок 23 подается на выход устройства для охлаждения. Охлажденный от обратного потока 18 прямой поток 6 теплообменника 7 из патрубка 8 поступает в дроссель 10, где дросселируется (расширяется и дополнительно охлаждается). В нем образуются две фазы: жидкая и газообразная. Поступая в холодоприемник 12 двухфазный поток разделяется – жидкость скапливается на дне сосуда, откуда может быть слита через патрубок 13, а холодная газообразная фаза уходит вверх и через патрубок 14 по трубопроводу 15 поступает в смеситель 16, где смешивается с холодным потоком 34, подаваемым по трубопроводу 19, и образует холодный обратный поток 18 теплообменника 7, выхолаживающий прямой поток 6. В зависимости от термодинамической задачи холодный поток 34 вихревой трубы 3 может смешиваться или (фиг. 1) в смесителе 16 с холодным обратным потоком 14 из трубопровода 15, поступающим из холодоприемника 12, или (фиг. 4) в тройнике-смесителе 31 с холодным прямым потоком 6, поступающим через патрубок 8 из теплообменника 7. При этом вихревая труба 3 будет работать в существенно разных режимах, например: а) по фиг. 1 в режиме максимальной холодопроизводительности (при ![]() ![]() по фиг.4 в режиме с минимальной температурой (при ![]() ![]() 1. Разделение воздуха методом глубокого охлаждения, том 1, ред. В.И. Епифанова и Д.С. Аксельрод. – М.: Машиностроение, 1973 г. 2. Меркулов А.П. Вихревой эффект и его применение в технике. – М.: Машиностроение, 1969. Формула изобретения
РИСУНКИ
|
||||||||||||||||||||||||||