Патент на изобретение №2192883
|
||||||||||||||||||||||||||
(54) СПОСОБ ВАКЦИНОТЕРАПИИ ОНКОЗАБОЛЕВАНИЙ
(57) Реферат: Изобретение относится к медицине, а именно к онкологии, и может быть использовано для вакцинотерапии опухолей. Предложено проводить стимуляцию противоопухолевых иммунных реакций посредством вакцинации человека ксеногенными опухолевыми клетками, полученными от животных (например, мышей), дискордантных по отношению к человеку. Способ позволяет повысить эффективность вакцинотерапии злокачественных опухолей. 1 з.п. ф-лы. Изобретение относится к медицине, а именно к лечению онкозаболеваний. Известно, что опухолевые клетки несут на своей поверхности иммуногенные детерминанты. Сам факт иммуногенности опухоли подразумевает возможность использования иммунотерапии в лечении онкологических заболеваний. Важное значение также имеет то, что опухоли разного гистологического типа могут экспрессировать одинаковые опухолеассоциированные антигены (ОАГ). Такое антигенное сходство, по-видимому, свидетельствуют о значительном сходстве внутриклеточных механизмов, лежащих в основе малигнизации разных типов клеток. Важно заметить, что ОАГ в большинстве своем являются филогенетически древними. Отсюда имеет место высокая степень гомологии между ОАГ человека и животных. Наличие ОАГ, само по себе, в большинстве случаев, однако, недостаточно для развития устойчивого эффективного противоопухолевого иммунитета. Согласно имеющимся данным [3, 9] низкая иммуногенность опухоли может обусловливаться: 1) отсутствием мембранной экспрессии продуктов главного комплекса гистосовместимости (ГКТ), способных комплексироваться с ОАГ; 2) отсутствием мембранной экспрессии костимуляторных молекул (LFA3, CD40, CD54, CD80/86), необходимых для полномасштабной активации Т-лимфоцитов, распознающих ОАГ в комплексе с продуктами ГКТ. В отсутствие взаимодействия костимуляторных молекул со своими лигандами (CD2, CD40L, ICAM, CD28) антигенная стимуляция приводит к анергии или делеции ОаАГ-специфичных Т-лимфоцитов; 3) дефицитом в опухолевом микроокружении иммуностимулирующих цитокинов (прежде всего интерферона (ИФ)-гамма и интерлейкина(ИЛ)-2), и 4) продукцией клетками опухоли иммуносупрессорных цитокинов, таких, например, как трансформирующий ростовой фактор (ТРФ)-бета и ИЛ-10. Цель иммунотерапии – преодолеть барьеры, стоящие на пути развития эффективного противоопухолевого иммунного процесса и увеличить количество в организме сенсибилизированных Т-лимфоцитов, способных реагировать на ОАГ по вторичному типу, что, в свою очередь, создает предпосылки для полномасштабной Т-клеточной активации относительно низкоиммуногенными интактными опухолевыми клетками [2, 3, 7]. Согласно имеющимся данным вакцинация опухолеассоциированными пептидами в принципе может приводить к формированию устойчивого противоопухолевого иммунитета [7]. Презентация пептидов Т-лимфоцитам в этом случае осуществляется дендритическими клетками и макрофагами, имеющими полный набор средств для запуска Т-клеточной активации. Важно, однако, заметить, что развитие иммунного ответа на одну или несколько опухолеассоциированных детерминант зачастую не приводит к замедлению развития опухолевого процесса, а лишь дает селективные преимущества для роста тем опухолевым клеткам, которые не экспрессируют эти детерминанты [7]. Иммунизация организма опухолевыми клетками в этом отношении выглядит более предпочтительной, так как позволяет индуцировать иммунные реакции на широкий спектр ОАГ. Увеличения иммуногенности аутологичных опухолевых клеток можно достичь следующим образом: 1) генетически модифицировать их таким образом, чтобы заставить одновременно экспрессировать на своей поверхности ОАГ, комплексированные с продуктами ГКГ, и костимуляторные молекулы, способные взаимодействовать с соответствующими экспрессированными на Т-лимфоцитах лигандами [9]. 2) вставить в них функционально активные гены, колерующие иммуностимуляторные цитокины (ИЛ-2, ИФ-гамма, ИЛ-4, ИЛ-6, ИЛ-12) [18]. Указанные подходы, однако, трудно реализуемы в клинической практике, поскольку возможности модификации аутологичных опухолевых клеток имеют не только технические, но и временные ограничения. Поэтому было обращено внимание на возможность использования в иммунотерапии чужеродных аллогенных опухолевых клеток. Эффективность такого подхода была доказана экспериментально. Предполагается, что аллоантигены в этом случае обеспечивают дополнительный стимул для развития противоопухолевых иммунных реакций [15]. В настоящее время в ряде клиник начата клиническая апробация (I и II фаза клинических испытаний) этого подхода [2, 5]. Следует, однако, заметить, что использование аллогенных клеток в качестве индукторов противоопухолевого иммунитета также имеет ряд ограничений. Во-первых, поскольку распознавание ОАГ рестриктировано продуктами ГКГ, необходимо, чтобы используемые для иммунизации аллогенные клетки имели общие с опухоленосителем антигены ГКГ. Во-вторых, как уже было замечено, опухолевые клетки, как правило, не несут на своей поверхности костимуляторные молекулы, а значит сами по себе не могут обеспечить эффективную активацию интактных опухолеспецифичных Т-лимфоцитов. Целью заявляемого изобретения является стимуляция противоопухолевых иммунных реакций, приводящих к формированию эффективного долговременного противоопухолевого иммунитета. Это достигается вакцинацией опухоленосителя (человека) ксеногенными (например, мышиными) опухолевыми клетками. Человек и мышь являются по отношению друг к другу дискордантными видами. Это означает, что в сыворотке крови человека в обязательном порядке присутствуют естественные антитела, способные вызвать острое отторжение трансплантированных мышиных клеток. Большая часть этих антител (составляющая примерно 1% сывороточных иммуноглобулинов) распознают на ксеногенных клетках альфа-галактозильный эпитоп (клетки человека не экспрессируют этот эпитоп из-за отсутствия в них фермента – альфа-1,3-галактозилтрансферазы). На основе имеющихся данных [1, 6, 11] можно полагать, что попадание ксеногенных опухолевых клеток в организм человека включает работу следующего иммунного механизма. 1. Сывороточные антигалактозильные антитела и комплемент покрывают поверхность ксеногенных опухолевых клеток и индуцируют процесс их разрушения. 2. Через взаимодействия с Fc-рецепторами и рецепторами к компонентам комплемента антигенный материал попадает в макрофаги и дендритические клетки. 3. Макрофаги и дендритические клетки презентируют антигенные детерминанты в комплексе с продуктами ГКГ II и I класса Т-хелперам (CD4+) и предшественникам цитолитических Т-лимфоцитов (CD8+) соответственно. Взаимодействие экспрессирующихся на антиген-презентирующих клетках костимуляторных молекул с соответствующими Т-клеточными мембранными лигандами, а также продуцируемые этими клетками иммуностимуляторные цитокины (ИЛ-12, фактор некроза опухоли (ФНО)-альфа, ИЛ-4 и др.) осуществляют эффективную костимуляцию антигенспецифических CD4+ Т-лимфоцитов. 4. Т-хелперы, активированные ОАГ и ксеноантигенами, посредством продукции цитокинов (ИФ-гамма, ИЛ-2 и ИЛ-15 и др.) стимулируют функциональную активность клеток, обладающих неспецифической противоопухолевой активностью (макрофаги, костномозговые цитостатические эффекторы, естественные цитотоксические и киллерные клетки). Активация этих клеток приводит к торможению опухолевого роста и ассоциируется с усилением экспрессии на клетках опухоли продуктов ГКГ. 5. Опухолеспецифические CD8+ цитолитические Т-лимфоциты, а также их предшественники распознают экспрессированные на поверхности опухолевых клеток комплексы, состоящие из ОАГ и продуктов ГКГ I класса, и после контактной и цитокиновой костимуляции со стороны активированных Т-хелперов и профессиональных антиген-презентирующих клеток вступают в фазу активного роста. 6. Высокая активность Т-клеточных цитолитических клонов, направленная против широкого спектра ОЛГ, приводит к лиминации опухоли из организма. Предложенный подход к лечению онкозаболеваний не имеет ранее упомянутых ограничений. В основе его эффективности лежит вовлечение большого количества аутологичных профессиональных антиген-презентирующих клеток в процесс индукции противоопухолевых иммунных реакций. Преимущества ксеновакцинотерапии перед методами лечения, основанными на использовании аутологичных или аллогенных клеточных вакцин, заключается в следующем: 1) она не требует использования бактериальных или цитокиновых адъювантов; 2) вовлекает в формирование противоопухолевых клеточных реакций естественный (пресуществующий иммунитет); и 3) решает проблему эффективной (иммуногенной) презентации ОАГ Т-лимфоцитам. В качестве индукторов (стимуляторов) противоопухолевого иммунитета были использованы клетки мышиных перевиваемых опухолевых линий. Конкретный выбор клеток для иммунизации осуществлялся на основе данных о происхождении опухоли и о реактивности (ареактивности) лимфоцитов пациента по отношению к тем или иным ОАГ (определяется по кожной реакции гиперчувствительности замедленного типа). Клеточная вакцина формируется из клеточных линий, экспрессирующих широкий спектр ОАГ. В ее состав в обязательном порядке включалась линия, которая, помимо ОАГ, экспрессирует структуры, обладающие выраженным иммуноадъювантным действием. Одна вакцинирующая доза включала в себя 5 ![]() 1) Больной Б. 64 г. Был оперирован по поводу меланомы (область правого плеча) в 1996 г. Рецидив заболевания с развитием метастатических поражений лимфоузлов правой подмышечной впадины отмечен в июне 1997 г. Проведена метастазэктомия. В течение 1997-1998 г. проводились курсы полихимиотерапии. С августа 1998 г. по декабрь 1999 г. проводилась вакцинотерапия, которая включала в себя 19 вакцинаций, сделанных по вышеуказанной схеме. По состоянию на декабрь 1999 г. констатируется полная ремиссия, субъективный статус пациента – 0. 2) Больная Н. 51 год. В апреле 1998 г. поставлен DS: меланома в области правового бедра. Произведено иссечение первичного очага 23 апреля 1998 г. (IV степень инвазии по Кларку). В мае 1998 г проведен курс полихимиотерапии. В декабре 1998 г. при рентгенографическом обследовании обнаружены метастатические очаги в костной ткани. В марте 1999 г. при сцинтиграфическом обследовании выявлено метастатическое поражение L2 с вовлечением всего тела и боковых отростков и переходом на L3, поражение (3 см) в области правого подвздошно-крестцового сочленения. В это же время был начат курс полихимиотерапии, приведший к резкому ухудшению самочувствия больной и ее отказу от дальнейшего химиотерапевтического лечения. С апреля по декабрь 1999 г. проводится вакцинотерапия, включившая в себя 11 иммунизаций, выполненных по вышеуказанной схеме. По состоянию на декабрь 1999 констатируется стойкая стабилизация болезни, субъективный статус пациентки по критериям ВОЗ 0. 3) Больная В. 64 г. В 1993 г. оперирована по поводу аденокарциномы прямой кишки: эктирпация прямой кишки с наложением anus praeter neturalis (T3N0M0). В 1997 г. развился рецидив болезни По этому поводу проведена двухэтапная лучевая терапия. Летом 1998 г. отмечена прогрессия заболевания с прорастанием опухоли во влагалище. С сентября 1998 г по декабрь 1999 г. проводится вакцинотерапия (17 вакцинаций). По состоянию на декабрь 1999 г. инструментальных данных за прогрессию заболевания нет. По результатам осмотра онкогинеколога констатирована частичная регрессия опухоли (появился доступ к матке, ранее отсутствующий в результате массивного опухолевого пророста). Субъективный статус – 0. Таким образом, полученные на сегодняшний день данные указывают на перспективность разработанного нового подхода к лечению онкозаболеваний. Литература Формула изобретения
|
||||||||||||||||||||||||||