Патент на изобретение №2191931
|
||||||||||||||||||||||||||
(54) УСТРОЙСТВО ДЛЯ СНИЖЕНИЯ ТУРБУЛЕНТНОГО СОПРОТИВЛЕНИЯ В ПРИСТЕННОЙ ТУРБУЛЕНТНОЙ ОБЛАСТИ ПОЛЯ ТЕЧЕНИЯ ВБЛИЗИ ПОВЕРХНОСТИ СТЕНКИ
(57) Реферат: Изобретение относится к управлению турбулентностью в пристенной турбулентности области поля течения вблизи поверхности стенки, обладающей системой парных цилиндрических вихрей или полосок, примыкающих к поверхности, содержащее средство ввода в пристенную область пассивного возмущающего воздействия, подавляющего образование парных цилиндрических вихрей. Это средство ввода имеет форму двумерной решетки выступов на упомянутой поверхности или впадин в ней, расположенных в последовательных колонках перпендикулярно направлению потока. Выступы или впадины в последующем ряду расположены в шахматном порядке относительно выступов предыдущего ряда. Техническим результатом изобретения является упрощение управления турбулентным потоком. 8 з.п. ф-лы, 6 ил., 3 табл. Изобретение относится к устройству для управления турбулентностью в пограничном слое и в других полях течения, ограниченных стенками, в частности к устройству для снижения турбулентного сопротивления в пристенной турбулентной области поля течения вблизи поверхности стенки. В патенте США 5263793 от 23 ноября 1993 г. и патенте США 5354017 от 11 октября 1994 г., которые используются в качестве аналогов, рассматривается турбулентность с парными схемами или картинками течения в ядре кажущейся неупорядоченности потока. В частности, эти модели течения, а также публикации, цитируемые в этих патентах, описывают турбулентные потоки, которые характеризуются наличием системы вращающихся вокруг главной оси парных цилиндрических вихрей или полосок, причем эта ось проходит в направлении потока, а также наличием проходящих наклонно или под углом к оси потока структур, которые взаимодействуют с системой вращающихся парных цилиндрических вихрей или полосок. Очевидно, что эти структуры распространяются с постоянной групповой скоростью, причем они возникают или образуются для уничтожения или взрывания вращающихся вихрей или полосок, которые повышают гидравлическое сопротивление потока. Наиболее существенными моделями или режимами распространения, очевидно, являются те, которые направлены под углом приблизительно 65o относительно направлению течения, а которые направлены под углом в диапазоне 50-80o, несут основную часть энергии распространяющихся структур. Эти вихри или полоски вращаются в противоположные стороны и располагаются вблизи ограничивающих стенок у наружной кромки и вне подслоя. Их динамические характеристики существенно меняются и колеблются. Существенно то, что мгновенные отклонения или изломы динамических параметров приводят к мгновенным выбросам среды, текущей с малой скоростью у стенки, в ядро потока, движущееся с большой скоростью. Оценка показала, что выбросы определяют значение сопротивления стенок. Кроме этого, выбросы, которые составляют до 80% сопротивления стенки, занимают по времени около 20%. Также изучение моделей течения таких потоков показывает, что при искажении цилиндрических вихрей происходит изменение сопряженной схемы течения, что типично для любой пристенной турбулентности. Для уточнения размера полосок в первую очередь необходимо понимать, что полоски являются проявлением локальных условий за пределами подслоя потока, примыкающего к стенке, а не природы самой стенки и не поля течения на значительном расстоянии от стенки. Локальные условия полностью определяются средним значением напряжения трения у стенки S, плотностью среды r, а также вязкостью среды m. Эти количественные значения определяют величину локального масштаба размера или масштаб длины L*, который обычно называют единицей размера стенки и который равен m/(sr)o. Преобладающее значение диаметра цилиндра номинально составляют 50-100 единиц размера стенки или 100L*-200L* на пару цилиндрических вихрей. Термин “преобладающий” в отношении диаметра означает, что наибольшее количество турбулентной энергии (пульсационной скорости) приходится на эти размеры. Дополнительно к этому имеются цилиндрические вихри с другими диапазонами размеров, обладающие значительным количеством турбулентной энергии. В соответствии с приведенными выше патентами управление турбулентностью среды осуществляют локальным вводом в пристенную турбулентную область двух отдельных возмущающих элементов, которые эффективны для создания в локальной зоне сложного возмущающего поля, которое строго связано с проходящими косо или под углом к продольной оси структурами, модифицируя их таким образом, что уменьшается или возрастает взаимодействие структур с системой парных цилиндрических вихрей, тем самым локально уменьшая или увеличивая турбулентность в поле течения. Первые возмущения могут вызываться пассивными средствами, например взаимодействием среды с рядом полосок, имеющих форму дельтовидных выступающих частей, разнесенных по стенке (т.е. поперек направлению потока), причем вершины выступающих частей направлены против потока. Вторые возмущения могут быть вызваны активными средствами, такими как ввод энергии в локальную зону активными механическими, электрическими или гидродинамическими средствами. Техническим результатом настоящего изобретения является создание устройства, предназначенного для упрощения управления турбулентным потоком, используя определенные типы пассивных возмущений, которые могут также создаваться активными средствами. Этот технический результат достигается тем, что в устройстве для снижения турбулентного сопротивления в пристенной турбулентной области поля течения вблизи поверхности стенки, обладающей системой парных цилиндрических вихрей или полосок, примыкающих к поверхности, содержащем средство ввода в пристенную область пассивного возмущающего воздействия, подавляющего образование парных цилиндрических вихрей, согласно изобретению средство ввода имеет форму двумерной решетки выступов на упомянутой поверхности или впадин в ней, расположенных в последовательных колонках перпендикулярно направлению потока, причем выступы или впадины в последующем ряду расположены в шахматном порядке относительно выступов предыдущего ряда. Выступы или впадины могут быть расположены в шахматном порядке регулярно или в шахматном порядке беспорядочно. Выступы и впадины могут проходить в поток на длину в диапазоне 5-15 единиц размера стенки, где единица размера стенки равна вязкости, деленной на квадратной корень из плотности и напряжения сдвига. Выступы и впадины могут иметь V-образную форму, причем вершины выступов или впадины могут быть направлены против направления течения. Угол при вершине выступов или впадин может находиться в диапазоне 50-90o. Шаг между выступами или впадинами в рядах может составлять один выступ или одну впадину на 200-300 единиц размера стенки. Шаг между выступами или впадинами в направлении течения может находиться в диапазоне один ряд на 200-300 единиц размера стенки. Размер выступов в направлении потока может находиться в диапазоне 150-250 единиц размера стенки. Ниже описаны варианты реализации настоящего изобретения в качестве примеров со ссылками на прилагаемые чертежи, в которых: фиг. 1 представляет поперечное сечение пристенной области течения перпендикулярно направлению потока; фиг. 2 схематично в плане показывает поле потока, представленное на фиг. 1, где видны полоски или цилиндрические вихри, примыкающие к границе стенки и имеющие волнообразную структуру “в елочку”; фиг.3 показывает поперечное сечение стенки с волнообразной структурой; фиг.4 показывает другой вариант волнообразных структур; фиг.5 представляет часть стенки, в которой имеются выступы; фиг.6 представляет сечение стенки по линии 6-6 на фиг.5. Как показано на чертежах, позицией 10 обозначена пристенная область течения со стенкой 12, ограничивающей текучую среду 13, в которой имеются локальные статистические структуры в виде вращающихся в противоположные стороны цилиндрических вихрей 14, 16 этой среды. Оси этих цилиндрических вихрей или полосок, как их иногда называют, располагаются усредненно в направлении течения, которое проходит в плоскость чертежа на фиг.1 и которое обозначено стрелкой 17 на фиг.2. Коротко говоря, цилиндрические вихри, вращающиеся в противоположные стороны, в среднем имеют длину, которая намного больше диаметра (приблизительно 1000L*). Как было указано выше, преобладающий размер цилиндрического вихря составляет приближенно от 100L* до 200L* на пару. В полностью развитом турбулентном течении эти локальные цилиндрические вихри перемещаются по потоку в любой части его у стенки, они разрушаются, искривляются и окончательно исчезают (т.е. уводятся из пристенной области). В патентах, приведенных выше, взаимодействие между парной структурой элементов, которые распределены на поверхности и находятся в потоке, и парными цилиндрическими вихрями, было рассмотрено с точки зрения уничтожения этих цилиндрических вихрей с последующим смешением медленно перемещающейся текучей среды в пограничной зоне с быстро перемещающейся текучей средой в ядре потока и наоборот. В этих патентах описаны активные и пассивные механизмы, которые предназначены для управления и запуска режимов, связанных с распространением волновых структур, которые, как было признано, играют определенную роль в уничтожении цилиндрических вихрей в пристенной области турбулентных течений. Пассивный механизм в соответствии с изобретениями, описанными в упомянутых патентах и направленными на управление распространением волновых структур, использует измерение формы поверхности, например, канавки, волнистость поверхности и т.п. при наличии турбулентного потока. Например, изменить форму поверхности можно, выполнив в ней канавки или наложив на нее клейкую полосу материала, в которой выполнены углубления заданной формы. Если имеет место волнообразное изменение формы поверхности, то амплитуда волновых структур должна быть в диапазоне 5-20 единиц размера стенки, чтобы она заключала зоны с пиковыми значениями турбулентности. Длина волны или шаг волновых структур зависят от цели, преследуемой при управлении турбулентностью. Ориентация волновых структур, т.е. направление впадин между вершинами их, проходит под углом приблизительно 15-30o относительно направления потока. Можно сказать, что направление “распространения” волновых структур должно быть приблизительно под углом 60-75o от вектора скорости потока. На фиг.2 в плане показаны цилиндрические вихри 14, 16, на которые накладываются волны, распространяющиеся в направлении по стрелке 18, проходящий под углом ![]() ![]() ![]() ![]() V (м/с) – Изменение сопротивления (%) 5,86 – -9,95 7,03 – -13,5 8,39 – -8,1 9,48 – -6,7 10,05 – -6,5 При фиксированном сдвиге (т.е. картина с равномерным шахматным порядком, как показано на фиг.6) было получено уменьшение сопротивления, но при одинаковых условиях эксперимента этот результат значительно меньше, чем при произвольном сдвиге. Принцип хаотичности был также применен к значениям высоты выступов, а также к V-образной форме выступов. Были получены результаты для смешения (т.е. увеличения сопротивления), приведенные в табл.С. В отношении смешения отметим, что сдвиг “е” между выступами в предыдущем и последующих рядах (т.е. расположение в шахматном порядке между колонками) был равен нулю. Другими словами, смешение интенсифицируется, если выступы расположены не в шахматном порядке. Форма такого вида подходит для теплообменных поверхностей и т.п. Если выступы располагаются в шахматном порядке, то настоящее изобретение можно применить к устройствам, в которых имеется любая движущаяся среда, таким как трубы, патрубки любого поперечного сечения, воздушные суда, например фюзеляжи самолетов, водные суда и т.п. аэродинамические профили, а также каналовые течения, которые исследовались в опытах, описанных выше. Кроме этого, настоящее изобретение можно также применить к активным возмущающим устройствам путем использования пьезоэлектрических и электрогидродинамических средств соответствующего размера, причем эти устройства должны располагаться таким образом, чтобы возмущающее воздействие взаимодействовало с парами цилиндрических вихрей. Расположение V-образных элементов в ряду может быть также хаотичным, т. е. положение элементов в ряду относительно элементов, находящихся на центральной линии, может быть произвольно выдвинутым или отодвинутым назад. При этом рисунок может повторяться. Результаты, приведенные выше, относящиеся к уменьшению сопротивления, были получены путем наложения решеток выступов только на нижнюю стенку (пол) исследовательской секции аэродинамической трубы. Если наложить такой материал с выступами на все стенки каналов или труб, то достигнутое уменьшение сопротивления (на основании нелинейного анализа) должно быть в большей степени по сравнению с простым интуитивным дублированием или сложением результатов по каждой стенке. При оптимальных условиях (скорость 7 м/сек для данного примера) уменьшение сопротивления может превысить 30%. Аналогичное улучшение смешения можно ожидать, если наложить на все стенки материал с соответствующим рисунком выступов. Преимущества и улучшенные результаты, которые получаются при использовании способа и устройства по настоящему изобретению, можно выявить из описания, приведенного выше, предпочтительного варианта реализации изобретения. В рамках прилагаемой формулы изобретения возможны различные изменения и модификации, не отходя от его существа. Формула изобретения
РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 09.12.2002
Извещение опубликовано: 20.11.2004 БИ: 32/2004
|
||||||||||||||||||||||||||