|
(21), (22) Заявка: 2001111959/14, 26.04.2001
(24) Дата начала отсчета срока действия патента:
26.04.2001
(45) Опубликовано: 27.10.2002
(56) Список документов, цитированных в отчете о поиске:
US 5346888, 13.09.1994. ГУЛЯЕВА Н.В. Перспективы создания лекарственных препаратов на основе карнозина (некоторые новые принципы). Биохимия, Т. 57, вып. 9, 1992, с. 1398-1403.
Адрес для переписки:
197022, Санкт-Петербург, П.С. Большой пр., 77, НП “АСГЛ-Иссл.лаб”, исп. директору В.К.Осиповичу
|
(71) Заявитель(и):
Некоммерческое партнерство “АСГЛ-Исследовательские лаборатории”
(72) Автор(ы):
Болдырев А.А., Никаноров В.А., Хребтова С.Б., Булыгина Е.Р., Крамаренко Г.Г., Лейнсоо Т.А., Сорокина Е.В., Стволинский С.Л., Тюлина О.В., Федорова Т.Н., Юнева М.О.
(73) Патентообладатель(и):
Некоммерческое партнерство “АСГЛ-Исследовательские лаборатории”
|
(54) СРЕДСТВО, ОБЛАДАЮЩЕЕ АНТИГИПОКСИЧЕСКОЙ И АНТИОКСИДАНТНОЙ АКТИВНОСТЬЮ
(57) Реферат:
Изобретение относится к медицине. Предложено применение метилового и этилового эфиров карнозина или их солей в качестве антиоксидантного и антигипоксического средства. Средство повышает окислительную устойчивость биологических структур. 5 табл., 3 ил.
Изобретение относится к медицине, а именно к средствам, обладающим антигипоксической и антиоксидантной активностью и являющимся производными L-карнозина.
Известны некоторые производные b-аланил-L-гистидина (L-карнозина). Описан его метиловый метиловый эфир (Pietta P.G., Chersi A., Gazz. Chim. Ital. , v. 98, 12, pp. 1503-1510, Yamashita S., Ishikawa N., Experientia, v. 24, 10, pp. 1079-1080, 1968), получены различные производные L-карнозина и его сложные эфиры и их соли, в том числе метиловый и этиловый эфиры (патент Испании ES 496892, кл. Cl C 07 C 103/52, 1981). Антигипоксическая и антиоксидантная активность метилового и этилового эфиров и их солей не описана.
L-карнозин является природным нейропептидом, который проявляет разнообразную биологическую активность. Показана его высокая эффективность по защите нейронов как в условиях in vitro (индивидуальные реакции повреждения макромолекул, суспензии изолированных нейронов или срезов мозга в условиях свободнорадикальной атаки), так и in vivo – на различных моделях экспериментальной ишемии мозга и сердца, гипобарической гипоксии (Болдырев А.А. Карнозин. Биологическое значение и возможности применения в медицине – М.: Изд-во МГУ, 1998, 320 стр.). Установлено, кроме того, что карнозин является важным природным фактором системы антиоксидантной защиты мозга в условиях окислительного стресса (Болдырев А.А. Карнозин и защита тканей от окислительного стресса – М.: Изд-во “Диалог – МГУ”, 1999, 362 стр.).
При внутрижелудочном введении крысам (однократно в виде водного раствора через зонд в дозе 500 мг/кг веса тела) максимальный уровень карнозина в крови наблюдался через 1 час, к исходу суток препарат в крови не обнаруживался (по данным ВЭЖХ).
В то же время динамика изменения содержания в крови гистидина – одного из продуктов гидролиза карнозина – указывает на то, что в интервале от 30 мин до 3 ч после внутрижелудочного введения карнозина этот дипептид активно гидролизуется карнозиназой (фиг.1).
Задача изобретения – создать эффективное антигипоксическое и антиоксидантное средство с пролонгированным действием, расширить ассортимент таких средств.
Задача изобретения реализуется применением сложных эфиров карнозина или их солей в качестве антигипоксического и антиоксидантного средства.
Изобретение иллюстрируется графическими материалами: Фиг.1 – фармакокинетика карнозина в крови крыс при однократном внутрижелудочном введении его водного раствора в дозе 500 мг/кг веса (n=5).
Фиг. 2 – зависимость степени ингибирования восстановления НСТ от концентрации исследуемых веществ.
Фиг. 3 – влияние карнозина и его эфиров на интенсивность окислительного гемолиза, индуцированного 0,5 мМ NaOCl.
и следующими примерами: Пример 1. Ферментативный гидролиз карнозина и его эфиров.
ВЭЖХ дипептидов и гистидина проводили на хроматографе “Altex”-334 с колонкой фирмы “Serva”, использовали флуоресцентный детектор “Schoeffel GM970” ( возб 340 нм, флуор 455 нм).
Полученные результаты представлены в таблице 1. Как показало проведенное сравнение, исследуемые производные карнозина – его синтетические этиловый и метиловый эфиры, в отличие от него самого, практически не подвергаются гидролизу карнозиназой.
Пример 2. Ингибирование хемилюминесценции липопротеинов сыворотки крови человека карнозином и его эстерифицированными производными.
Исследование антиоксидантной активности карнозина и его этилового и метилового эфиров проводили в сопоставлении с аналогичным действием препарата кавинтон, обладающим сосудорасширяющим действием. Для этого измеряли хемилюминесценцию (ХЛ) атерогенных липопротеинов (суммарная фракция липопротеинов низкой и очень низкой плотности) сыворотки крови человека, вызываемую процессом перекисного окисления липидов.
Исследованные соединения (за исключением кавинтона) сами по себе не влияли на спонтанное свечение. В то же время, при индукции ХЛ ионами железа такие параметры окисления липопротеинов, как начальная вспышка (h) и длительность латентного периода до развития основной вспышки ХЛ ( ), претерпевали в присутствии исследуемых соединений изменения, характеризующие их антиоксидантную активность. Результаты эксперимента представлены в таблице 2.
Из таблицы видно, что как карнозин, так и его производные снижали дозозависимым способом величину h, характеризующую уровень предобразованных гидроперекисей. Эффективность их действия была примерно одинаковой. Увеличение карнозином длительности латентного периода ХЛ ( ), характеризующего антиоксидантный статус сыворотки крови, было достоверно значимым и развивалось пропорционально повышению его концентрации – на 15, 90 и 190% при 0,5, 1 и 2,5 мМ соответственно. Метиловый эфир карнозина повышал длительность латентного периода ХЛ более чем вдвое при его концентрации в пробе, равной 2,5 мМ, хотя при концентрации 1 мМ он не оказывал статистически достоверного влияния на этот параметр. Этиловый эфир карнозина увеличивал длительность латентного периода ХЛ более эффективно (на 15, 65 и 194% при используемых концентрациях). В целом, этиловый эфир карнозина с наибольшей эффективностью подавлял индуцированную хемилюминесценцию, что указывает на его высокую антиоксидантную активность.
Кавинтон не проявлял антиоксидантного действия, он вызывал дозозависимое увеличение h и полностью подавлял последующий ХЛ сигнал (H). Эти данные показывают, что карнозин и его эфиры защищают липопротеины крови от окисления, а кавинтон не проявляет этого действия, поскольку повышает величину h.
), присущее карнозину, и в еще большей степени его эфирам, показывает, что эти соединения способны препятствовать индукции перекисного повреждения липопротеинов.
Полученные данные свидетельствуют о том, что изучаемые вещества действуют на кинетические параметры ХЛ как ингибиторы свободнорадикальных реакций, препятствующие разветвлению цепной реакции перекисного окисления при введении инициатора реакции (ионов железа) в модельную систему, и тем самым тормозят окислительное повреждение липидов. Более того, подавление начальной вспышки ХЛ (h) указывает на их способность восстанавливать гидроперекиси, накапливающиеся в ходе окисления. Способность исследуемых веществ снижать уровень предобразованных продуктов окисления может оказаться особенно существенной, поскольку этот эффект может иметь определенное значение для их использования в медицинской практике.
Приведенные результаты в целом указывают на способность карнозина и его эфиров повышать окислительную устойчивость биологических структур, что особенно важно в условиях гипоксии.
Пример 3. Оценка супероксид перехватывающей активности карнозина и его метилового и этилового зфиров в присутствии ионов меди и цинка.
Было выяснено, что в концентрации 150 мкМ карнозин и его эстерифицированные производные после преинкубации с эквимолярными концентрациями меди и цинка практически полностью ингибируют восстановление НСТ, что свидетельствует о наличии выраженной СПА у исследуемых соединений. К0,5 для карнозина составляет 30 мкМ, а для этилового и метилового эфиров – 25 и 60 мкМ соответственно.
Таким образом, эффективность СПА для этих комплексов значительно различается в области концентраций 20-60 мкМ. Высокая СПА отмечена у этилового эфира карнозина и более низкая – у карнозина и его метилового эфира.
Пример 4. Исследование протекторного действия карнозина и его метилового и этилового эфиров на устойчивость эритроцитов к окислительному гемолизу.
В присутствии карнозина и его эфиров в конечной концентрации 10 мМ окислительной гемолиз под действием 0,5 мМ гипохлорита натрия полностью подавлялся. Для сравнения эффективности исследуемых соединений как антигемолитиков мы исследовали их протекторное действие в концентрациях 0,15, 0,25 и 1 мМ. Исследуемые соединения растворяли в физиологическом растворе (0,9% раствор NaCl, рН растворов доводили до величины 8,2). В этих условиях гемолиз суспензии протекал медленно и был неполным. Для оценки антиоксидантного действия исследуемых соединений рассчитывали процент клеток, гемолизированных через 6 мин после добавления окислителя. Полученные результаты представлены на фиг.3.
Из фиг.3 видно, что в этих условиях гемолиз суспензии протекал медленно и был неполным. Карнозин и его эфиры даже в концентрациях, в 2-3 раза меньших, чем концентрация гемолитика, оказывали протекторное действие на эритроциты в ходе их окислительного повреждения. В присутствии 0,15 и 0,25 мМ этих соединений полного гемолиза не наблюдалось даже в течение 20 мин. В концентрации 1 мМ эфиры карнозина препятствовали гемолизу более эффективно, чем карнозин. При уменьшении концентрации карнозина и его эфиров до 0,15 мМ их протекторное влияние все еще сохранялось, хотя эфиры были менее эффективны.
Таким образом, полученные в экспериментах in vitro результаты указывают на высокую антиоксидантную активность этилового и метилового эфиров карнозина, превышающую аналогичные эффекты карнозина, при этом эффективность этилового эфира в целом была выше, чем у метилового.
На экспериментальных животных были получены данные, указывающие на способность этилового и метилового эфиров карнозина обеспечивать антиоксидантную защиту организма и в условиях in vivo.
Пример 5. Антигипоксическое действие эфиров карнозина в модели гипобарической гипоксии.
В работе использовали самцов взрослых крыс линии Wistar весом 180-220 г. Моделирование гипобарической гипоксии осуществляли в барокамере. Эксперименты выполняли при разрежении атмосферы, которое вызывает гибель до 100% животных за 30 мин; для крыс этот показатель составляет 175 мм рт.ст.
В первой серии экспериментов животных (n=8 в каждой группе) выдерживали в барокамере до момента остановки дыхания. Для большинства животных гибель носила обратимый характер при условии восстановлении нормального атмосферного давления. За 1 ч до начала “подъема на высоту” вводили исследуемые вещества в дозе 100 мг/кг или соответствующий объем физиологического раствора. Выбор дозы для карнозина и его эфиров был сделан на основе известных данных об эффективности карнозина в различных моделях in vivo (рентгеновское облучение, электроболевой шок, переохлаждение и др.) и данных о его малой токсичности (LD50
Регистрировали время реституции – время от прекращения гипоксии до момента восстановления активной позы (ВР). Полученные данные представлены в таблице 3.
Полученные результаты демонстрируют значительное снижение времени реституции у животных, которым до начала гипоксии были введены исследуемые соединения. Более выраженный эффект наблюдается при введении животным этилового и метилового эфиров карнозина (время реституции составляет 18 и 37% от контрольного соответственно, у карнозина – 56%), при этом минимальным временем реституции характеризовались животные, получавшие перед гипоксическим воздействием этиловый эфир карнозина.
Во 2 серии экспериментов крыс выдерживали при давлении 175 мм рт.ст. в камере 15 мин. Регистрировали количество погибших животных в соответствующих группах, количество животных, демонстрировавших в барокамере судорожную активность, и, используя условную систему баллов (табл. 4), оценивали физиологическое состояние выживших животных.
За 1 ч до начала “подъема на высоту” крысам вводили в 0,9-1,1 мл физиологического раствора (в зависимости от веса животного) исследуемые вещества: карнозин и его этиловый эфир в стабилизированной сульфат-анионами форме – в дозе 100 мг/кг; кавинтон – в дозе 2,5 мг/кг (эффективная доза при экспериментах на животных: см. Кавинтон в эксперименте и клинической практике. Методические рекомендации. Под ред. академика РАМН Е.И. Гусева. Гедеон Рихтер А. О. M., 1998, 56 стр.). Кавинтон использовали в качестве препарата сравнения, учитывая его широкое применение в клинике в качестве противоишемического и антигипоксического средства (там же). Сульфат этилового эфира карнозина использовали в связи с его более высокой устойчивостью при хранении и удобством для препаративного использования, благодаря его низкой гигроскопичности и хорошей сыпучести. (Могут быть использованы и другие соли эфиров). Контрольным крысам вводили соответствующий их весу объем физиологического раствора (из расчета 1 мл/200 г веса тела). Полученные данные представлены в таблице 5.
Применение сульфата этилового эфира карнозина повышало выживаемость животных до 75%, значительно снижало проявление неврологической симптоматики но сравнению с контрольной группой, что выражалось в двукратном (25 и 55%, соответственно) уменьшении судорожной активности и существенном повышении балльной оценки состояния животных, которая била сравнима с кавинтоном или даже превышала ее.
Таким образом, эфиры карнозина и их соли, предлагаемые в качестве антиоксидантного и антигипоксического средства, в отличие от карнозина, практически не подвергаются гидролизу карнозиназой, что пролонгирует их действие, проявляет высокую антиоксидантную и антигипоксическую активность, которая сравнима с активностью кавинтона, но в отличие от него лучше предохраняют животных от проявлений судорожной активности.
Формула изобретения
Применение метилового и этилового эфиров карнозина или их солей в качестве антиоксидантного и антигипоксического средства.
РИСУНКИ
PC4A – Регистрация договора об уступке патента Российской Федерации на изобретение
Прежний патентообладатель:
Некоммерческое партнерство “АСГЛ-Исследовательские лаборатории”
(73) Патентообладатель:
ЗАО “АСГЛ-исследовательские лаборатории”
Дата и номер государственной регистрации перехода исключительного права: 27.12.2004 № 20623
Извещение опубликовано: 20.02.2005 БИ: 05/2005
PC4A – Регистрация договора об уступке патента Российской Федерации на изобретение
Прежний патентообладатель:
ЗАО “АСГЛ-исследовательские лаборатории”
(73) Патентообладатель:
Болдырев Александр Александрович
Дата и номер государственной регистрации перехода исключительного права: 28.12.2005 № РД0005513
Извещение опубликовано: 20.02.2006 БИ: 05/2006
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 27.04.2006
Извещение опубликовано: 7.03.2007 БИ: 09/2007
|
|