Патент на изобретение №2191157
|
||||||||||||||||||||||||||
(54) СПОСОБ НЕПРЕРЫВНОЙ ПЕРЕРАБОТКИ УГЛЕСОДЕРЖАЩЕГО СЫРЬЯ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
(57) Реферат: Изобретение относится к области получения активных углей и органических продуктов из углесодержащего сырья и может быть использовано в различных отраслях промышленности для очистки различных веществ и сорбции их из жидкой и других сред. Способ включает стадии предварительного нагрева углесодержащего сырья до 120-150oС, карбонизации в интервале температур от 150-250 до 600-700oС, активации в температурном интервале 850-950oС и созревания. Процесс переработки углесодержащего сырья ведут в бескислородной среде с подачей сухого азота на стадию созревания в противотоке к твердому продукту и направлением парогазовой смеси со стадии созревания на стадию карбонизации противотоком к твердому продукту карбонизации. Стадии предварительного нагрева сырья и карбонизации ведут в присутствии каталитических добавок. Процесс активации осуществляют в ниспадающем потоке твердого продукта карбонизации, вращающемся под действием парогазовой смеси, направленной под давлением по касательной к нему. Способ осуществляют в устройстве, содержащем последовательно соединенные посредством переточных патрубков и размещенные друг под другом камеры предварительного нагрева и карбонизации, снабженные нагревателями, а также камеры активации, созревания. Изобретение позволяет комплексно перерабатывать сырье и получать активный уголь с повышенной сорбционной способностью за счет увеличения объема микро- и мезопор при сокращении времени протекания процесса, в том числе карбонизации и активации. 2 с. и 1 з.п. ф-лы, 3 табл., 2 ил. Изобретение относится к области получения активных углей и органических продуктов из углесодержащего сырья и может быть использовано в различных отраслях промышленности – химической, нефтяной, медицинской, пищевой для очистки различных веществ и сорбции их из жидкой и других сред. Наиболее близкими к предложенному по технической сущности и количеству совпадающих признаков являются способ непрерывной переработки углесодержащего сырья и устройство для его осуществления (RU, 2118291, С 01 В 31/08, Бюл. 24, 27.08.98 г.), обеспечивающие протекание процесса в бескислородной среде. Известный способ включает стадии предварительного нагрева сырья до температуры 120-150oС, карбонизации в интервале температур от 150-250 до 600-700oС в присутствии каталитических добавок и отделения смолообразующих продуктов, активации и созревания с подачей сухого азота на стадию созревания в противотоке к твердому продукту карбонизации, и направлением парогазовой смеси, образующейся на стадии созревания, противотоком к твердому продукту на предыдущие стадии. Перемещение твердого продукта на каждой стадии осуществляется принудительно с регулируемой скоростью перемещения, а активный уголь выгружают со стадии созревания. Парогазовую смесь процесса переработки отбирают со стадии предварительного нагрева и направляют на разделение с выделением смолообразного продукта и водоорганического конденсата. Известно устройство для непрерывной переработки углесодержащего сырья, содержащее последовательно соединенные посредством переточных патрубков и размещенные друг под другом камеры предварительного нагрева и карбонизации, снабженные нагревателями, камеры активации и созревания с рубашкой охлаждения и патрубком для ввода сухого азота, узлы подачи сырья в камеру предварительного нагрева, каталитических добавок, водяного пара, разделения парогазовой смеси, размещенный над камерой предварительного нагрева, сообщенный с ней и снабженный патрубками для вывода смолообразного продукта и водоорганического конденсата и узел отвода активного угля из камеры созревания. Камеры выполнены в виде идентичных реакторов шнекового типа с приводами. Известные способ и устройство не обеспечивают получение активного угля с необходимым количеством микро- и мезопор за счет низкой кинетики (ламинарной) процесса, низкой температуры карбонизата, поступающего на активацию, и низкой температуры активации. Технический результат изобретения заключается в получении активного угля с повышенной сорбционной способностью за счет увеличения в нем количества микро- и мезопор и в сокращении времени протекания процесса, в том числе карбонизации и активации. Этот результат достигается тем, что в способе непрерывной переработки углесодержащего сырья, включающем стадии предварительного нагрева сырья до температуры 120-150oС, карбонизации в интервале температур от 150-250 до 600-700oС в присутствии каталитических добавок и отделения смолообразных продуктов, активации и созревания; подачу сухого азота на стадию созревания в противотоке к твердому продукту карбонизации, и направление парогазовой смеси, образующейся на стадии созревания, противотоком к твердому продукту на предыдущие стадии, а также принудительное перемещение с регулируемой скоростью твердого продукта на стадиях предварительного нагрева сырья, карбонизации и созревания и отбор парогазовой смеси процесса переработки со стадии предварительного нагрева с направлением ее на разделение с выделением смолообразного продукта и водоорганического конденсата, согласно изобретению в процессе активации осуществляют дегазацию твердого продукта карбонизации, а активацию проводят при температуре 850-950oС в ниспадающем потоке твердого продукта карбонизации, вращающемся под действием парогазовой смеси, направленной под давлением по касательной к нему, хотя бы в двух противоположных точках по диаметру потока, причем парогазовую смесь получают сжиганием водорода в кислороде, полученных путем электролиза деионизованной воды, при этом при подаче на стадию активации парогазовую смесь разбавляют паром до достижения температуры активации. Этот результат достигается также тем, что в устройстве для непрерывной переработки углесодержащего сырья, содержащем последовательно соединенные посредством переточных патрубков и размещенные друг под другом камеры предварительного нагрева и карбонизации, снабженные нагревателями, камеры активации и созревания с рубашкой охлаждения и патрубком для ввода сухого азота, узлы подачи сырья в камеру предварительного нагрева, каталитических добавок, водяного пара, разделения парогазовой смеси, размещенный над камерой предварительного нагрева, сообщенный с ней и снабженный патрубками для вывода смолообразного продукта и водоорганического конденсата и узел отвода активного угля из камеры созревания, согласно изобретению камера активации содержит теплоизолирующий корпус, внутри которого установлена вертикальная труба для проведения процесса активации, например, из жаропрочной керамики с нагревателями в верхней части и отверстиями, расположенными друг против друга в нижней ее части по окружности трубы, направленными по касательной к внутреннему диаметру трубы, и снабжена патрубками, установленными на трубе соосно отверстиям, и газовыми горелками, размещенными в стенках корпуса камеры так, что пламя горелок расположено внутри патрубков напротив отверстий в трубе, при этом к зонам горения подведены трубопроводы от узла подачи водяного пара, а на входе и выходе камеры активации установлены шлюзовые затворы, соединенные с вертикальной трубой, причем входной шлюзовой затвор снабжен выходным патрубком для отвода газовой смеси, возникшей в процессе дегазации продукта карбонизации, в отделитель пыли, а газовые горелки соединены трубопроводами с генератором кислорода и водорода, а также тем, что генератор кислорода и водорода содержит дистиллятор-дионизатор, соединенный через каплеотделитель с устройством твердополимерного электролиза кислорода и водорода. За счет дегазации продукта карбонизации, происходящей в верхней части вертикальной трубы и создания в ней вихревого парогазового потока высокой температуры, приводящего во вращательное движение твердый продукт карбонизации, на стадии активации обеспечивается интенсивное открытие микро- и мезопор в твердом продукте карбонизации, что ускоряет протекание процесса и увеличивает количество микро- и мезопор. На фиг.1 представлена схема установки для непрерывной переработки углесодержащего сырья. На фиг.2 – разрез по АА вертикальной трубы камеры активации. Установка для непрерывной переработки углесодержащего сырья, представленная на фиг.1, состоит из последовательно соединенных и размещенных друг под другом камер предварительного нагрева 1, карбонизации 2, активации 3 и созревания 4, 5. Камеры соединены друг с другом посредством переточных патрубков 6, 7, 8 и 9. Камеры предварительного нагрева 1, карбонизации 2 и созревания 4, 5 выполнены в виде идентичных реакторов шнекового типа, валы которых приводятся во вращение с помощью приводов 10. Камеры предварительного нагрева 1 и карбонизации 2 снабжены рубашкой обогрева 11, внутри которой размешены электронагреватели 12, установленные вдоль каждой из камер равномерно по их периметру. Камеры созревания снабжены рубашками охлаждения 13, 14, в которые через штуцеры 15 и 16 подается и отводится соответственно хладагент. Камера активации 3 содержит теплоизолирующий корпус 17, внутри которого установлена вертикальная труба 18 для проведения процесса активации, например, из жаропрочной керамики. В верхней части вертикальной трубы 18 вдоль нее размещены электронагреватели 12, а в нижней части трубы, по ее окружности, попарно расположены отверстия 19, направленные по касательной к внутреннему диаметру трубы (фиг.2) и установлены соосно отверстиям патрубки 20, например, из жаропрочной керамики. В стенках теплоизолирующего корпуса 17, напротив патрубков 20, размещены газовые горелки 21 так, что в процессе горения пламя горелок расположено внутри патрубков напротив отверстий 19. К зонам горения от узла подачи водяного пара 22, например парогенератора, подведены трубопроводы 23. На входе и выходе камеры активации 3 установлены шлюзовые затворы 24 и 25, соответственно соединенные с вертикальной трубой 18, выполненные, например, из жаропрочной керамики. Входной шлюзовой затвор 24 снабжен выходным патрубком 26 для отвода газовой смеси в отделитель пыли 27, например, вида Циклон. В шлюзовых затворах 24, 25 размещены датчики температуры 28 и давления 29 для контроля над процессом активации. Газовые горелки 21 соединены трубопроводами 30 – подачи кислорода и 31 – подачи водорода, с генератором кислорода и водорода 32. Камера созревания 5 снабжена патрубком 33 для подачи сухого азота противотоком к твердому продукту и соединена патрубком 34 с узлом 35 отвода активного угля, выполненного, например, в виде шлюзового затвора. Камера созревания 4 снабжена патрубком 36, через который по трубопроводу отводится парогазовая смесь, поступающая через патрубок 37 в камеру карбонизации 2. Камера карбонизации 2 снабжена также патрубками 38 и 39 для ввода каталитических добавок и отвода смолообразного продукта (жижки) соответственно. Камера предварительного нагрева 1 снабжена патрубками 40 – для подачи сырья, 41 – для подачи сухого азота и 42 – для отвода парогазовой смеси. Узел подачи сырья в камеру предварительного нагрева 1 содержит бункер – накопитель 43, шнековый дозатор 44 и шлюзовой затвор 45, соединенный с патрубком 40 камеры предварительного нагрева 1. Узел разделения парогазовой смеси, размещенный над камерой предварительного нагрева 1 и сообщенный с ней через патрубок 42, содержит отделитель смолы 46 с патрубками 47 – для вывода смолообразного продукта в смолоприемник и 48 – для вывода водоорганического конденсата в конденсатор паров 49. Генератор кислорода и водорода 32 содержит дистиллятор-дионизатор 50, соединенный через каплеотделитель 51 с устройством, например, твердополимерного электролиза кислорода и водорода 52. Установка снабжена узлом каталитических добавок 53 и прибором управления 54. Наличие шлюзовых затворов на входе в камеру предварительного нагрева и на выходе из последней камеры созревания обеспечивает проведение процесса переработки сырья в бескислородной среде. Способ осуществляют следующим образом. Подготовленное исходное сырье (любые измельченные отходы древесины, целлюлозы и др.) влажностью порядка 10 мас. % подают вместе с каталитическими добавками (если это необходимо) в бункер-накопитель 43, где его перемешивают. Далее сырье поступает на наклонный шнековый дозатор 44, которым транспортируется в шлюзовой затвор 45 и далее в камеру предварительного нагрева 1. Одновременно в начало камеры предварительного нагрева 1 через штуцер 41 подают сухой азот, ускоряющий процесс дегидратации сырья и одновременно препятствующий попаданию воздуха в камеру предварительного нагрева 1. В процессе перемещения в камере 1 сырье подвергается термохимической обработке при температуре 120-150oС. Заданная температура в камере предварительного нагрева 1 обеспечивается электронагревателями 12, автоматически включаемыми прибором управления 54 в зависимости от показаний датчиков температуры и поступлением парогазовой смеси с последующих стадий процесса. Образующиеся на стадии предварительного нагрева сырья газообразные продукты в потоке парогазовой смеси, поступающей из последующих камер, через патрубок 42 попадают в узел разделения парогазовой смеси 46, а обработанный и нагретый твердый продукт по переточному патрубку 6 поступает в камеру карбонизации 2. В камере карбонизации 2 в процессе перемещения твердого продукта происходит процесс термохимической деструкции в интервале температур от 150-250 до 600-700oС. При необходимости, в камеру карбонизации 2 через патрубок 38 из узла 53 вводят каталитические добавки. Смолообразный продукт, образующийся в результате процесса обработки, отводят через патрубок 39 в смолоприемник (на фиг. 1 не показан), а газообразные продукты, возникшие на стадии карбонизации, совместно с газообразными продуктами, поступившими со стадии созревания, попадают в камеру 1. Время пребывания сырья на стадиях предварительного нагрева и карбонизации выбирают в зависимости от вида и качества исходного сырья и каталитических добавок и устанавливают на приборе управления, который регулирует скорость перемещения шнеков в камерах. Твердый продукт карбонизации по переточному патрубку 7 поступает в шлюзовой затвор 24 камеры активации 3 и ниспадающим потоком перемещается по вертикальной трубе 18 вниз к шлюзовому затвору 25. Процесс активации проводится в температурном диапазоне 850-950oС. Для обеспечения указанного диапазона температур в верхней части вертикальной трубы 18 ее дополнительно обогревают электронагревателями 12. В вертикальной трубе 18 проводят дегазацию продукта карбонизации, отсасывая парогазовую смесь через патрубок 26 шлюзового затвора 24 в разделитель пыли 27, например вида Циклон. В нижней части трубы 18, в зоне расположения отверстий 19, газовыми горелками 21 и подачей водяного пара от парогенератора 22, поддерживается указанный диапазон температур. Ниспадающий поток продукта карбонизации под воздействием парогазовых струй, направленных под давлением по касательной к нему, закручивается и происходит интенсивный процесс гидроксилирования дегазированного продукта карбонизации. Парогазовые потоки получают сжиганием водорода в кислороде и разбавлением смеси низкотемпературным паром до температуры 930 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Формула изобретения
РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 12.10.2005
Извещение опубликовано: 10.10.2006 БИ: 28/2006
|
||||||||||||||||||||||||||