Патент на изобретение №2187011

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2187011 (13) C2
(51) МПК 7
F02K9/80
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 28.04.2011 – прекратил действие

(21), (22) Заявка: 2000119378/06, 20.07.2000

(24) Дата начала отсчета срока действия патента:

20.07.2000

(45) Опубликовано: 10.08.2002

(56) Список документов, цитированных в отчете о
поиске:
US 2468787 A, 03.05.1948. US 3297278 A, 10.01.1967. RU 2080466 C1, 27.05.1997. RU 94031235 A1, 10.08.1996. US 3774398 A, 27.11.1973. DE 1262076 A, 29.02.1968. GB 2180299 A, 25.03.1987.

Адрес для переписки:

396072, г. Нововоронеж, ул. Победы, 5, кв.157, В.И.Быковскому

(71) Заявитель(и):

Быковский Владимир Иванович,
Черных Владимир Николаевич

(72) Автор(ы):

Быковский В.И.,
Черных В.Н.

(73) Патентообладатель(и):

Быковский Владимир Иванович,
Черных Владимир Николаевич

(54) РЕАКТИВНЫЙ ДВИГАТЕЛЬ


(57) Реферат:

Изобретение относится к реактивной технике, в частности для создания тяги в двигательных установках. Реактивный двигатель содержит камеру сгорания, за которой установлена турбина, выходную трубу, центральное тело, выполненное в виде рассекающего конуса, кольцевое сопло, кольцевую усеченную полусферу, кольцевое сопло образовано между торцами рассекающего конуса и выходной трубы. С внешней стороны выходной трубы установлена кольцевая усеченная полусфера, вогнутая сторона которой обращена к кольцевому соплу. Торец выходной трубы выполнен по кривой в противоположную сторону от оси двигателя. Изобретение позволяет увеличить тягу двигателя за счет создания газодинамической подушки. 1 ил.


Изобретение относится к реактивной технике, в частности к устройствам для создания тяги в любых типах реактивных двигателей.

Известно устройство (см. кн.: А.Л.Клячкин. Теория воздушно-реактивных двигателей. – М.: Машиностроение, 1969, стр. 17-18, рис.1,5-а,б).

Турбореактивный двигатель (ТРД) (рис.1,5 а) представляет собой простейший тип авиационного ГТД. Основными конструктивными элементами его являются входное устройство В, многоступенчатый осевой компрессор (одно- и двухваловый) К с развитой механизацией и системной регулирования, камера сгорания КС, чаще всего кольцевого типа, с индивидуальными жаровыми трубами и фокусниками для организации эффективного сжигания топлива, одно- или двухступенчатая осевая турбина Т и реактивное сопло РС. При необходимости кратковременного увеличения (формирования) тяги двигателя за турбиной ТРДФ устанавливают переходный диффузор Д и форсажную камеру ФК (см. рис.1,5 б). Недостатки: невозможно получить более высокую тягу за счет соплового насадка.

Наиболее близким техническим решением из известных является описание изобретения к патенту US 2468787, МПК В 64 С 23/00, 1949, (прототип).

Устройство для получения аэродинамической подъемной силы (силы тяги) содержит камеру сгорания, турбину, выходную трубу, центральное тело, кольцевой диффузор, образованный кольцевыми плоскостями центрального тела и выходной трубы, в котором частично находятся кольцевые аэродинамические профили (кольцевые усеченные полусферы), вогнутые стороны которых обращены к кольцевому диффузору, а выпуклые наружу, кольцевые сопла, образованные:
верхнее кольцевое сопло образовано между торцевой частью рассекающего конуса и передней кромкой верхней плоскости кольцевой усеченной полусферы,
нижнее кольцевое сопло – между задней кромкой кольцевой усеченной полусферы 1 и передней кромкой верхней плоскости нижней кольцевой усеченной полусферы.

Однако в данном случае невозможно получить более высокую тягу (подъемную силу), сопоставимую с нашим изобретением, за счет зоны пониженного давления, образующейся на выпуклых сторонах кольцевых усеченных полусфер – в силу низкой плотности и высокой температуры газа, истекающего из турбины. Сама конструкция приемной камеры кольцевого диффузора приводит к увеличению поперечного сечения двигателя в несколько раз, что приводит к большим затруднениям применения его в традиционных типах авиационной техники в силу возрастания лобового сопротивления и компенсирования этим сопротивлением того прироста силы тяги, который получался этим устройством.

Технический результат – повышение силы тяги за счет образования газодинамической подушки, незначительное увеличение поперечного сечения двигателя по сравнению с традиционно применяемыми реактивными двигателями.

Эта проблема решается посредством устройства, содержащего камеру сгорания, за которой установлена турбина, выходная труба, торец которой выполнен по кривой в противоположную сторону от оси двигателя, центральное тело в виде рассекающего конуса, кольцевое сопло, кольцевую усеченного полусферу, причем кольцевое сопло образованно между торцами рассекающего конуса и выходной трубы, а с внешней стороны выходной трубы установлена кольцевая усеченная полусфера, вогнутая сторона которой обращена к кольцевому соплу 6.

Такое сочетание конструктивных элементов и взаимосвязь между ними дает возможность решения поставленной задачи – увеличение силы тяги и недопущения чрезмерного увеличения поперечного сечения двигателя.

Образовавшиеся продукты сгорания из камеры сгорания с высоким давлением и температурой обтекают тело, выполненное в виде рассекающего конуса, который рассекает продукты сгорания по периметру и подает их в кольцевое сопло, где они (продукты сгорания) разгоняются до больших скоростей, через выходное сечение кольцевого сопла тонкой струйкой попадают на вогнутую сторону кольцевой усеченной полусферы и описывают ее по периметру, сжимаются вследствие большой центробежной силы, причем из-за этой центробежной силы в процессе обтекания не могут расширится в сторону центра кривизны кольцевой усеченной полусферы, продукты сгорания, сжатые до большого давления центробежной силы, движутся по вогнутой стороне кольцевой усеченной полусферы, образуя на ее поверхности газодинамическую подушку, с давлением газа в ней от нескольких атмосфер до нескольких десятков атмосфер.

Таким образом взаимодействие газодинамической подушки на вогнутую сторону кольцевой усеченной полусферы образует вектор силы тяги в пять-шесть раз больше вектора силы тяги кольцевого сопла.

На чертеже показан реактивный двигатель в разрезе.

Реактивный двигатель, содержащий камеру сгорания 1, за которой установлена турбина 2, выходная труба 3, центральное тело, выполненное в виде рассекающего конуса 4, кольцевое сопло 6, кольцевую полусферу 8, причем кольцевое сопло 6 образовано между торцами 11, 5 рассекающего конуса 4 и выходной трубы 3, а с внешней стороны выходной трубы 3 установлена кольцевая усеченная полусфера 8, вогнутая сторона 9 которой обращена к кольцевому соплу 6. Продукты сгорания тонкой струйкой обтекают вогнутую сторону 9 кольцевой усеченной полусферы 8, образуя газодинамическую подушку 10. 11 – торец рассекающего конуса 4, 12 – хорда кольцевой усеченной полусферы 8.

Пример конкретного выполнения и работы реактивного двигателя.

Устройство работает следующим образом. Продукты сгорания при работе реактивного двигателя истекают через кольцевое сопло 6, образованное посредством торца 5 выходной трубы 3 и торца 11 рассекающего конуса 4, где с внешней стороны выходной трубы 3 установлена кольцевая усеченная полусфера 8, вогнутая сторона 9 которой обращена к кольцевому соплу 6.

Далее продукты сгорания со скоростью 50-800 м/с струйкой обтекают вогнутую сторону 9 кольцевой усеченной полусферы 8, образуя на ее вогнутой стороне 9 газодинамическую подушку 10, за счет центробежной силы, возникающей в результате движения продуктов сгорания по вогнутой стороне 9 кольцевой усеченной полусферы 8. Взаимодействие газодинамической подушки с вогнутой стороной 9 кольцевой усеченной полусферы 8 дает образование силы тяги, которая превышает в пять-шесть раз силу тяги кольцевого сопла 6.

Продукты сгорания, двигаясь со скоростью 50-800 м/с и выше вдоль вогнутой поверхности кольцевой усеченной полусферы, сжимаются под действием центробежной силы, образуя газодинамическую подушку с давлением в ней от 3 до 15 атм.

Газодинамическая подушка, взаимодействуя с кольцевой усеченной полусферой 8, образует силу тяги, которая в пять-шесть раз больше по величине силы тяги, возникающей в кольцевом сопле 6, и зависит от радиуса кривизны и площади кольцевой усеченной полусферы, а также от угла атаки между струйкой газа и хордой 12 кольцевой усеченной полусферы, и от скорости истечения и сечения струйки продуктов сгорания. В реактивном двигателе можно использовать несколько ступеней пар “кольцевое сопло – кольцевая усеченная полусфера”. Разница между силой тяги кольцевой усеченной полусферы и проекцией силы тяги кольцевого сопла на ось двигателя будет равна результирующей силе, которая будет приводить в движение летательный аппарат.

Формула изобретения


Реактивный двигатель, содержащий камеру сгорания, за которой установлена турбина, выходную трубу, торец которой выполнен по кривой в противоположную сторону от оси двигателя, центральное тело в виде рассекающего конуса, кольцевое сопло, кольцевую усеченную полусферу, отличается тем, что кольцевое сопло образовано между торцами выходной трубы и рассекающего конуса, а с внешней стороны выходной трубы установлена кольцевая усеченная полусфера, вогнутая сторона которой обращена к кольцевому соплу.

РИСУНКИ

Рисунок 1


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 21.07.2004

Извещение опубликовано: 20.02.2006 БИ: 05/2006


Categories: BD_2187000-2187999