Патент на изобретение №2186748

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2186748 (13) C2
(51) МПК 7
C04B35/491
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 28.04.2011 – может прекратить свое действие

(21), (22) Заявка: 2000106813/03, 20.03.2000

(24) Дата начала отсчета срока действия патента:

20.03.2000

(45) Опубликовано: 10.08.2002

(56) Список документов, цитированных в отчете о
поиске:
RU 2002719 C1, 15.11.1993. RU 2067567 C1, 10.10.1996. JP 60-33260 A, 20.02.1985. US 3673119 A, 27.06.1972.

Адрес для переписки:

344090, г.Ростов-на-Дону, ул. Мильчакова, 10, НКТБ “Пьезоприбор”

(71) Заявитель(и):

Научное конструкторско-технологическое бюро “Пьезоприбор” Ростовского государственного университета

(72) Автор(ы):

Вусевкер Ю.А.,
Панич А.Е.,
Смотраков В.Г.,
Еремкин В.В.,
Ладакин Г.К.

(73) Патентообладатель(и):

Научное конструкторско-технологическое бюро “Пьезоприбор” Ростовского государственного университета

(54) ПЬЕЗОКЕРАМИЧЕСКИЙ МАТЕРИАЛ


(57) Реферат:

Изобретение эффективно при создании пьезокерамических элементов для гидроакустических приборов, работающих в режимах как приема, так и излучения. Техническим результатом является получение пьезокерамического материала средней сегнетожесткости с tg= 0,23-0,48%; величиной Кр, равной 0,59-0,63; высоким значением d31 ((145-190) 10-12 Кл/Н), Qм = 300-690. Пьезокерамический материал содержит оксиды при следующем соотношении, мас.%: PbO 65,84-66,03; ZrO2 19,64-19,67; TiO2 11,43-11,51; SrO 1,55-1,56; Nb2O5 0,29-0,58; ZnO 0,20-0,36; MnO 0,11-0,20; La2O3 0,26-0,46; Bi2O3 0,39-0,68. 2 табл.


Изобретение относится к области пьезоэлектрических керамических материалов средней сегнетожесткости, устойчивых к электрическим и механическим воздействиям, и предназначено для создания пьезокерамических элементов гидроакустических приборов, эффективно работающих в режимах как приема, так и излучения.

м<700, относительно высокой величиной T33/0>1200 и высокими значениями коэффициентов электромеханической связи Kij, приближающимися по своей величине к коэффициентам электромеханической связи сегнетомягких материалов. В отечественной литературе к материалам средней сегнетожесткости принято относить ЦТСтВС-2 (Климов В.В., Дидковская О.С., Приседский В. В. Изв. АН СССР. Неорганические материалы, 1982, Т. 18, С. 1650), ЦТБС-3 (Отраслевой стандарт ОСТ 11 0444-87. Материалы пьезокерамические) [4-5] . Основные характеристики обсуждаемых материалов приведены в табл. 1. Как видно из таблицы, основная масса материалов данного класса имеет добротность в пределах Qм= 350-500 и величину Кр>0,58. Отечественные материалы обладают большими значениями относительной диэлектрической проницаемости и d33. Вместе с тем ЦТБС-3 демонстрирует относительно низкие значения коэффициентов электромеханической связи и пьезочувствительности g33

Основой известных материалов ЦТСтБС-2, выпускаемого Украиной, и ЦТБС-3 российского производства являются оксиды свинца, стронция, бария, титана и циркония.

Наиболее близким к заявляемому материалу по химической композиции является пьезокерамический материал (Патент RU 2002719 C1, С 04 В 35/00, опубл. 15.11.1993) [7], принимаемый за прототип, относящийся к сегнетожестким материалам (ЦТССт-5) и обладающий параметрами: tg = 0,9%, T33/0 = 1000, Кр= 0,50, d31= 9010-12 Кл/Н, Qм > 700 (Веневцев Ю.Н., Политова Е.Д., Иванов С. А. Сегнето- и антисегнетоэлектрики семейства титаната бария. – М.: Химия, 1985, 256 с. ) [8]. Однако известный материал не может быть эффективно использован в области создания пьезоэлементов для гидроакустических приборов, работающих в режимах как приема, так и излучения.

Техническим результатом является получение пьезокерамического материала средней сегнетожесткости, который может быть эффективно использован в области создания пьезоэлементов для гидроакустических приборов, работающих в режимах как приема, так и излучения, за счет понижения tg (0,23-0,48%), повышения величины пьезомодуля d31 ((145-190)(10-12Кл/Н) и коэффициента электромеханической связи Кр (0,59-0,63).

Последнее достигается введением добавок Lа2О3 и Nb2O5. Известно (Фесенко Е.Г., Данцигер А.Я., Разумовская О.Н. Новые пьезокерамические материалы. Ростов-на-Дону. Изд-во Ростовского ун-та, 1983, 160 с.) [9], что добавки Lа2О3 и Nb2O5 повышают сегнетожесткость материала, т.е. повышают T33/0, tg, d31, Kр и снижают механическую добротность Qм. Таким образом, введение в химическую композицию материала прототипа указанных оксидов, как это следует из известных публикаций, должно привести к увеличению диэлектрических потерь материала (tg), а также способно сдвинуть фазовый состав материала с морфотропной фазовой границы с полной потерей полезных параметров.

Заявляемое изобретение позволяет получить благодаря новому качественно-количественному составу пьезокерамический материал, обладающий низким значением tg (0,23-0,48%), более высоким значением d31 ((145-190)(10-12 Кл/Н), высокой величиной T33/0 (1300-1950), повышенной добротностью Qм= (300-690) и высоким значением Кр=(0,59-0,63).

Указанный технический эффект достигается тем, что пьезокерамический материал, включающий РbО, ZrO2, TiO2, SrO, ZnO, MnO, Bi2O3, согласно изобретению дополнительно содержит оксиды лантана и ниобия при следующем соотношении компонентов (маc.%):
РbО – 65,84-66,03
ZrO2 – 19,64-19,67
TiO2 – 11,43-11,51
SrO – 1,55-1,56
Nb2O5 – 0,29-0,58
ZnO – 0,20-0,36
MnO – 0,11-0,20
La2O3 – 0,26-0,46
Bi2О3 – 0,39-0,68
В табл. 2 приведены основные электрофизические характеристики предлагаемого материала в зависимости от состава. Материалы готовились химическим соосаждением из фторидно-нитратных растворов. Для формирования структуры перовскита полученные в виде гидроксидов химические композиции синтезировались при 1120-1170 К. Спекание образцов диаметром 10 мм и высотой 3 мм осуществляли в течение 7,2103 с при температуре 1450-1490 К в засыпке, обеспечивающей атмосферу паров РbО. На сошлифованные до 1 мм диски наносили серебряную пасту, которую вжигали при температуре 970 К. Образцы поляризовали в воздушной среде при охлаждении от 590 К в постоянном электрическом поле напряженностью 10 см2. Определение электрофизических характеристик проводилось в соответствии с ГОСТом 12370-72. Полученные экспериментальные данные свидетельствуют о том, что предлагаемый пьезокерамический материал обладает оптимальными с точки зрения решаемой технической задачи (получение материала средней сегнетожесткости) характеристиками в интервале величин компонентов, указанных в формуле изобретения (составы 5-8, табл. 2). В сравнении с материалом ЦТСтБС-2 полученный материал имеет более высокие значения Кр и меньшие диэлектрические потери. Сравнение параметров полученного нами материала с характеристиками широко используемого российского материала ЦТБС-3 свидетельствует о том, что по величине tg, Кр разработанный материал значительно превосходит ЦТБС-3. Остальные параметры ни в чем не уступают последнему. Температура Кюри предлагаемого материала составляет 528 5 К (для ЦТБС-3 Тк=453 К), что предполагает большую стабильность его параметров и расширение температурной области использования. Полученный материал имеет широкий диапазон спекания в сравнении с материалом ЦТБС-3 и создан на базе промышленно выпускаемого материала.

Источнини информации

2. Sensor Technology Limited (BM Hi-tech Division). Piezoelectric ceramics. Product catalogue. Application notes. 1995.

4. Климов В.В., Дидковская О.С., Приседcкий В.В. Изв. АН СССР. Неорганические материалы, 1982. Т. 18. С. 1650.

5. Отраслевой стандарт ОСТ 11 0444-87. Материалы пьезокерамические.

7. Патент RU 2002719 C1, C 04 B 35/00, опубл. 15.11.1993, 4 с.

8. Веневцев Ю. Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. – М.: Химия, 1985, 256 с.

9. Фесенко Е.Г., Данцигер А.Я., Разумовская О.Н. Новые пьезокерамические материалы. – Ростов-на-Дону: Изд-во Ростовского ун-та, 1983, 160 с.

Формула изобретения


Пьезокерамический материал, включающий оксиды свинца, циркония, титана, стронция, цинка, марганца, висмута, отличающийся тем, что он дополнительно содержит оксиды лантана и ниобия при следующем соотношении компонентов, мас. %:
PbO – 65,84 – 66,03
ZrO2 – 19,64 – 19,67
TiO2 – 11,43 – 11,51
SrO – 1,55 – 1,56
Nb2O5 – 0,29 – 0,58
ZnO – 0,20 – 0,36
MnO – 0,11 – 0,20
La2O3 – 0,26 – 0,46
Bi2O3 – 0,39 – 0,68х

РИСУНКИ

Рисунок 1, Рисунок 2

Categories: BD_2186000-2186999