Патент на изобретение №2186073
|
||||||||||||||||||||||||||
(54) КОМПЛЕКСЫ МЕТАЛЛОВ, СОДЕРЖАЩИЕ ЛИГАНДЫ 3-АРИЛЗАМЕЩЕННОГО ИНДЕНИЛА, КАТАЛИЗАТОР ПОЛИМЕРИЗАЦИИ ОЛЕФИНОВ И СПОСОБ ПОЛИМЕРИЗАЦИИ
(57) Реферат: Изобретение относится к комплексам металлов формулы (I), где М – титан, цирконий или гафний в формальной степени окисления +2,+3 или +4; R’ – фенил, бифенил или нафтил; R* – водород или гидрокарбил; Х – галоген или метил, к катализаторам полимеризации олефинов, содержащих эти лиганды, и способу полимеризации С2-С100000– ![]() ![]() Изобретение относится к комплексам металлов 4 группы и катализаторам полимеризации, образованным из них, которые, в частности, пригодны для применения в процессе полимеризации для получения гомополимеров и сополимеров ![]() ![]() где М – титан, цирконий или гафний в состоянии формального окисления +2, +3 или +4; R’ – арильный лиганд или его галоген-, силил-, алкил-, циклоалкил-, дигидрокарбиламино-, гидрокарбилокси- или гидрокарбиленаминозамещенное производное, причем указанный R’ содержит от 6 до 40 неводородных атомов; Z является двухвалентной группой или группой, содержащей одну ![]() Х представляет одновалентную анионную лигандную группу, содержащую до 60 атомов, исключительно из класса лигандов, которые представляют циклические делокализованные ![]() X’ представляет, каждый раз независимо, лигирующее соединение – нейтральное основание Льюиса, содержащее до 20 атомов; X” представляет двухвалентную анионную лигандную группу, содержащую до 60 атомов; р = 0, 1, 2 или 3; q = 0, 1 или 2; r = 0 или 1. Вышеописанные комплексы могут существовать в виде выделенных кристаллических веществ необязательно в чистой форме или в форме смеси с другими комплексами, в форме сольватированного аддукта необязательно в растворителе, особенно в органической жидкости, а также в форме димера или его хелатированного производного, где хелатообразователь представляет органическое вещество, такое как этилендиаминтетрауксусная кислота (ЭДТК). Также настоящее изобретение относится к катализатору для полимеризации олефинов, содержащему A) 1) комплекс металла формулы (I) и 2) активирующий сокатализатор, причем молярное соотношение 1) и 2) составляет от 1:10000 до 100:1, или B) продукт реакции, образовавшийся при превращении комплекса металла формулы (I) в активный катализатор с помощью методов активирования. Настоящее изобретение также относится к способу полимеризации олефинов, включающему контактирование в условиях полимеризации одного или нескольких С2-20– ![]() A) 1) комплекс металла формулы (I) и 2) активирующий сокатализатор, причем молярное соотношение 1) и 2) составляет от 1:10000 до 100:1, или B) продукт реакции, образовавшийся при превращении комплекса металла формулы (I) в активный катализатор с помощью методов активирования. Наконец, настоящее изобретение относится к способу получения сополимеров моновинилароматического мономера и этилена, включающему приведение в контакт, в условиях полимеризации, смеси, содержащей один или несколько моновинилароматических мономеров и этилен, с катализатором, содержащим A) 1) комплекс металла формулы (I) и 2) активирующий сокатализатор, причем молярное соотношение 1) и 2) составляет от 1:10000 до 100:1 или B) продукт реакции, образовавшийся при превращении комплекса металла формулы (I) в активный катализатор с помощью методов активирования. Применение катализаторов и способов по настоящему изобретению приводит, в результате, к высокоэффективному образованию высокомолекулярных полиолефинов в широком интервале условий полимеризации, а особенно при повышенных температурах. Они особенно пригодны для образования сополимеров этилена и стирола (ЕS-полимеров) и сополимеров этилена со стиролом и диеном (ESDM-полимеров), где диен представляет этилиденнорборнен, 1,4-гексадиен или подобный неконъюгированный диен. Применение новых катализаторов полимеризации по настоящему изобретению позволяет включить большие количества сомономера, особенно – винилароматического сомономера, в сополимер на единицу катализатора из-за сочетания высокой каталитической эффективности с высоким содержанием сомономера. Катализаторы данного изобретения можно также наносить на материал-носитель и использовать в процессах полимеризации олефинов в суспензии или в газовой фазе. Катализатор можно предварительно полимеризовать с одним или несколькими олефиновыми мономерами in situ в реакторе для полимеризации или в отдельном процессе, с извлечением промежуточного соединения из форполимеризованного катализатора перед процессом первичной полимеризации. Подробное описание Все ссылки на Периодическую таблицу элементов здесь будут соотноситься с Периодической таблицей элементов, опубликованной и обеспеченной авторскими правами CRC Press, Inc., 1995. Также любая ссылка на группу или группы будет относиться к группе или группам, как они отражены в Периодической таблице элементов, с использованием системы ИЮПАК для нумерации групп. Олефины, используемые здесь, представляют C2-100000 алифатические или ароматические соединения, содержащие виниловую ненасыщенность, а также циклические соединения, такие как циклобутен, циклопентен и норборнен, в том числе норборнен, замещенный в положении 5 и 6 C1-20-углеводородными группами. Включаются также смеси таких олефинов, а также смеси таких олефинов с С4-40-диолефиновыми соединениями. Примерами последних соединений являются этилиденнорборнен, 1,4-гексадиен и норборнадиен. В процессе полимеризации могут образоваться длинноцепочечные мономеры с концевыми виниловыми группами, например, за счет явления ![]() ![]() где каждый из R1 – независимо водород или C1-4-алкил, и каждый из R2 – независимо R1 или галоген. В комплексах металлов предпочтительными группами X’ являются монооксид углерода; фосфины, особенно триметилфосфин, триэтилфосфин, трифенилфосфин и бис(1, 2-диметилфосфино)этан; Р(ОR)3, где R представляет C1-20-гидрокарбил (углеводородный радикал); простые эфиры, в особенности тетрагидрофуран; амины, особенно пиридин, бипиридин, тетраметилэтилендиамин (TMEDA) и триэтиламин; олефины и конъюгированные диены, содержащие от 4 до 40 атомов углерода. К комплексам, содержащим диеновые Х’ -группы, относятся комплексы, в которых металл находится в формальной степени окисления +2. Что также касается комплексов металлов, это то, что Х выбирают предпочтительно из группы, состоящей из галогена, гидрокарбила и N,N-диалкиламинозамещенного гидрокарбила. Число групп Х зависит от степени окисления М, от того, является ли Х анионной, дианионной или нейтральной группой, является ли Z двухвалентным или нет и присутствуют ли какие-либо двухвалентные группы X”. Специалист в этой области техники поймет, что количество различных заместителей и особенности Z выбирают для обеспечения равновесия заряда, причем посредством этого получают в результате нейтральный комплекс металла. Например, когда Z двухвалентный, а г = 0, р на два меньше формальной степени окисления М. Когда Z содержит один нейтральный двухэлектронный центр координационно-ковалентного связывания и М находится в состоянии формального окисления +3, р может равняться нулю, а г = 1, или р может равняться 2, а г = 0. Наконец, например, если М имеет формальную степень окисления +2, Z может представлять двухвалентную лигандную группу, р и г могут оба равняться нулю и может присутствовать одна нейтральная лигандная группа. Предпочтительными координационными комплексами, применяемыми по настоящему изобретению, являются комплексы, соответствующие формуле (II) ![]() где R’ – фенил, бифенил или нафтил; М – титан; Y – -О-, -S-, -NR*-, -PR*-; -NR2* или -PR2*; Z* – SiR*2, CR*2, SiR*2SiR*2, CR*2CR*2, CR*=CR*, CR*2SiR*2 или GeR*2; каждый из R* – независимо водород или его выбирают среди гидрокарбила, гидрокарбилокси, силила, галогенированного алкила, галогенированного арила и их сочетаний, причем указанный R* содержит до 20 неводородных атомов и необязательно две R* -группы из Z (когда R* не является водородом) или R*-группa из Z и R*-группа из Y образуют циклическую систему; X, X’ и X” имеют установленные ранее значения; р = 0, 1 или 2; q = 0 или 1; г = 0 или 1; при условии, что когда р = 2, q и г = 0, М находится в состоянии формального окисления +4 (или М находится в состоянии формального окисления +3, если Y представляет -NR*2 или -PR*2), и Х представляет анионный лиганд, выбранный из группы, состоящей из галогенидной, гидрокарбильной, гидрокарбилокси-, ди(гидрокарбил)амидо-, ди(гидрокарбил)фосфидо-, гидрокарбилсульфидо- и силильной групп, а также их галоген-, ди(гидрокарбил)амино-, гидрокарбилокси- и ди(гидрокарбил )фосфинозамещенных производных, причем указанная группа Х содержит до 30 неводородных атомов, когда г = 1, р и q = 0, М находится в состоянии формального окисления +4, и X” представляет дианионный лиганд, выбранный из группы, состоящей из гидрокарбадиильных, оксигидрокарбильных и гидрокарбилендиоксигрупп, причем указанная группа Х содержит до 30 неводородных атомов, когда р = 1, q и г = 0, М находится в состоянии формального окисления +3 и Х представляет стабилизирующую анионную лигандную группу, выбранную из группы, состоящей из аллила, 2-(N,N-диметиламино)фенила, 2-(N,N-диметиламинометил)фенила и 2-(N,N-диметиламино)бензила, и когда р и г = 0, q = 1, М находится в состоянии формального окисления +2 и X’ представляет нейтральный диен с сопряженными или несопряженными двойными связями, необязательно замещенный одной или несколькими углеводородными группами, причем указанный X’ содержит до 40 атомов углерода и образует ![]() когда р = 2, q и г = 0, М находится в состоянии формального окисления +4, и каждый Х представляет независимо метил, бензил или галогенид; когда р и q = 0, г = 1 и М находится в состоянии формального окисления +4, X” представляет 1,4-бутадиенильную группу, которая образует с М металлоциклопентеновое кольцо, когда р = 1, q и г = 0, М находится в состоянии формального окисления +3 и Х представляет 2-(N,N-диметиламино)бензил и когда р и г = 0, q = 1 и М находится в состоянии формального окисления +2, X’ представляет 1,4-дифенил-1,3-бутадиен или 1,3-пентадиен. Особенно предпочтительным координационным комплексом является комплекс, соответствующий формуле ![]() где R” представляет трет-бутил и Х представляет хлор, метил или бензил. Примерами комплексов металлов, которые можно использовать при практическом применении настоящего изобретения, являются 3-фенилинденидьные комплексы: (трет-бутиламидо)диметил( ![]() (трет-бутиламидо) диметил( ![]() (трет-бутиламидо)диметил( ![]() (трет-бутиламидо)диметил( ![]() (трет-бутиламидо)диметил( ![]() (н-бутиламидо)диметил( ![]() (н-бутиламидо)диметил( ![]() (н-бутиламидо)диметил( ![]() (н-бутиламидо)диметил( ![]() (н-бутиламидо)диметил( ![]() (циклододециламидо)диметил( ![]() (циклододециламидо)диметил( ![]() (циклододециламидо)диметил( ![]() (циклододециламидо)диметил( ![]() (циклододециламидо)диметил( ![]() (2, 4, 6-триметиланилидо)диметил( ![]() (2, 4, 6-триметиланилидо)диметил( ![]() (2,4, 6-триметиланилидо)диметил( ![]() (2, 4, 6-триметиланилидо)диметил( ![]() (2,4, 6-триметиланилидо)диметил( ![]() (трет-бутиламидо)диметокси( ![]() (трет-бутиламидо)диметокси( ![]() (трет-бутиламидо)диметокси( ![]() (трет-бутиламидо)диметокси( ![]() (трет-бутиламидо)диметокси( ![]() 3-нафтилинденильные комплексы: (трет-бутиламидо)диметил( ![]() (трет-бутиламидо)диметил( ![]() (трет-бутиламидо)диметил( ![]() (трет-бутиламидо)диметил( ![]() (трет-бутиламидо)диметил ( ![]() 3-бифенилинденильные комплексы: (трет-бутиламидо)диметил( ![]() (трет-бутиламидо)диметил( ![]() (трет-бутиламидо)диметил( ![]() (трет-бутиламидо)диметил( ![]() (трет-бутиламидо)диметил( ![]() (L*-H)d +(A)d-, где L* – нейтральное основание Льюиса; (L*-H)+ представляет кислоту Бренстеда; Аd- – не образующий координационных связей совместимый анион с зарядом d– и d =1-3, целое число. Предпочтительнее Аd- соответствует формуле [M’Q4] , где М’ – бор или алюминий с формальной степенью окисления +3, и каждый Q выбирают независимо среди гидридных, диалкиламидных, галогенидных, углеводородных, гидрокарбилоксидных, галогензамещенных углеводородных, галогензамещенных гидрокарбилоксидных и галогензамещенных силилгидрокарбильных радикалов (включая пергалогенированные углеводородные, пергалогенированные гидрокарбилоксидные и пергалогенированные силилгидрокарбильные радикалы), причем указанный Q содержит до 20 атомов углерода, при условии, что не более чем один Q представляет галогенид. Примеры подходящих гидроксикарбилоксидных групп Q приводятся в патенте США 5296433. В более предпочтительном варианте воплощения изобретения d равен 1, т.е. , контрион имеет единичный отрицательный заряд и представляет А–. Активирующие сокатализаторы, содержащие бор, которые особенно полезны при получении катализаторов данного изобретения, можно представить общей формулой (L*-H)+(BQ4)–, где L* имеет установленные ранее значения; В – бор в состоянии формального окисления 3; Q представляет углеводородную, гидрокарбилокси-, фторированную углеводородную, фторированную гидрокарбилокси- или фторированную силилгидрокарбильную группу с числом неводородных атомов до 20 при условии, что не более чем в одном случае Q представляет углеводородный радикал. Предпочтительными солями оснований Льюиса являются аммониевые соли, предпочтительнее соли триалкиламмония, содержащие одну или несколько С12-40-алкильных групп. Наиболее предпочтительно, когда каждый из Q представляет фторированную арильную группу, особенно пентафторфенильную группу. Пояснительными, но не ограничивающими, примерами соединений бора, которые могут применяться в качестве активирующих сокатализаторов при получении улучшенных катализаторов данного изобретения, являются соли тризамещенного аммония, такие как триметиламмоний-тетракис(пентафторфенил)борат, триэтиламмоний-тетракис(пентафторфенил)борат, трипропиламмоний-тетракис(пентафторфенил)борат, три(н-бутил)аммоний-тетракис(пентафторфенил)борат, три(втор-бутил)аммоний-тетракис(пентафторфенил)борат, N,N-диметиланилиний-тетракис(пентафторфенил)борат, N,N-диметиланилиний-н-бутилтрис(пентафторфенил)борат, N,N-диметиланилиний-бензилтрис(пентафторфенил)борат, N, N-диметиланилиний-тетракис(трет-бутилдиметилсилил)-2, 3, 5, 6-тетрафторфенил)борат, N, N-диметиланилиний-тетракис(4-триизопропилсилил)-2, 3, 5, 6-тетрафторфенил)борат, N,N-диметиланилиний-пентафторфенокситрис(пентафторфенил)борат, N,N-диметиланилиний-тетракис(пентафторфенил)борат, N,N-диметил-2, 4, 6-триметиланилиний-тетракис(пентафторфенил)борат, диметилоктадециламмоний-тетракис(пентафторфенил)-борат, метилдиоктадециламмоний-тетракис(пентафторфенил)-борат, диалкиламмониевые соли, такие как ди(изопропил)аммоний-тетракис(пентафторфенил)борат, метилоктадециламмоний-тетракис(пентафторфенил)борат, метилоктадодециламмоний-тетракис(пентафторфенил)борат и диоктадециламмоний-тетракис(пентафторфенил)борат; соли тризамещенного фосфония, такие как трифенилфосфоний-тетракис(пентафторфенил)борат, метилдиоктадецилфосфоний-тетракис(пентафторфенил)-борат и три(2, 6-диметилфенил)фосфоний-тетракис(пентафторфенил) борат; соли дизамещенного оксония, такие как дифенилоксоний-тетракис(пентафторфенил)борат, ди(о-толил)оксоний-тетракис(пентафторфенил)борат и ди(октадецил)оксоний-тетракис(пентафторфенил)борат; соли дизамещенного сульфония, такие как ди(о-толил)сульфоний-тетракис(пентафторфенил)борат и метилоктадецилсульфоний-тетракис(пентафторфенил)борат. Предпочтительными (L*-H)+– катионами являются метилдиоктадециламмоний и диметилоктадециламмоний. Другие подходящие ионообразующие активирующие сокатализаторы содержат соль катионного окисляющего агента и не образующего координационной связи совместимого аниона, изображаемую формулой (Охe+)d(Аd-)e, где Охe+ – катионный окисляющий агент с зарядом е+; е = 1-3, целое число; Аd- и d имеют установленные ранее значения. Примерами катионных окисляющих агентов являются ферроцений, гидрокарбилзамещенный ферроцений, Аq+ или Рb+2. Предпочтительными вариантами Аd- являются анионы, определение которым дается в связи с активирующими сокатализаторами, содержащими кислоту Бренстеда, в особенности тетракис(пентафторфенил)борат. Еще один подходящий ионообразующий активирующий сокатализатор содержит соединение, представляющее соль карбений-иона и не образующего координационной связи совместимого аниона, изображаемую формулой ![]() где ![]() А– имеет установленные ранее значения. Предпочтительным карбений-ионом является тритил-катион, т.е. трифенилметилий. Другой подходящий ионообразующий активирующий сокатализатор содержит соединение, представляющее соль силилий-иона и не образующего координационной связи совместимого аниона, изображаемую формулой R3Si(Х’)q+А–, где R – C1-10-гидрокарбил, а X’, q и А– имеют установленные ранее значения. Предпочтительными активирующими сокатализаторами – солями силилия являются триметилсилилий-тетракиспентафторфенилборат, триэтилсилилий-тетракиспентафторфенилборат и их эфирозамещенные аддукты. Соли силилия в общих чертах описаны ранее в J. Chem. Soc. Chem. Comm., 1993, 383-384, а также в Lambert, J. B. et al., Organometallics, 1994, 13, 2430-2443. Применение вышеуказанных солей силилия в качестве активирующих сокатализаторов для добавления к катализаторам полимеризации описывается в заявке на патент США, регистрационный номер 304314, зарегистрированной 12 сентября 1994, опубликованной в равноценной форме как WO 96/08519 21 марта 1996. Некоторые комплексы спиртов, меркаптанов, силанолов и оксимов с трис(пентафторфенил)бораном также являются эффективными активаторами катализаторов и могут применяться по настоящему изобретению. Такие сокатализаторы описываются в патенте США 5296433. Метод объемного электролиза подразумевает электрохимическое окисление комплекса металла в условиях электролиза в присутствии фонового электролита, содержащего не образующий координационных связей инертный анион. При этом методе используются такие растворители, фоновые электролиты и электролитические потенциалы для электролиза, что побочные продукты электролиза, которые могут сделать комплекс металла каталитически неактивным, во время реакции, по существу, не образуются. Точнее, подходящими растворителями и материалами являются жидкости, способные в условиях электролиза (обычно, при температурах от 0 до 100oС) растворять фоновый электролит и являющиеся инертными. “Инертными растворителями” являются растворители, которые не восстанавливаются или не окисляются в условиях реакции, используемой для электролиза. Обычно, с учетом нужного взаимодействия при электролизе, можно подобрать растворитель и фоновый электролит, которые не изменяются под действием электрического потенциала, используемого в случае нужного процесса электролиза. Предпочтительными растворителями являются дифторбензол (все изомеры), диметоксиэтан (DME) и их смеси. Электролиз можно осуществлять в стандартном электролизере, содержащем анод и катод (называемые также рабочим электродом и противоэлектродом соответственно). Подходящими конструкционными материалами для электролизера являются стекло, пластик, керамика и металл со стеклянным покрытием. Электроды изготавливают из инертных проводящих материалов, под которыми подразумеваются проводящие материалы, не изменяющиеся под воздействием реакционной смеси или условий реакции. Предпочтительными инертными проводящими материалами являются платина или палладий. Обычно проницаемая для ионов мембрана, например тонкая стеклообразная фритта, разделяет электролизер на отдельные камеры – камеру рабочего электрода и камеру противоэлектрода. Рабочий электрод погружают в реакционную среду, содержащую комплекс металла, который активируют, растворитель, фоновый электролит и любые другие материалы, нужные для умеренного электролиза или стабилизации получающегося в результате комплекса. Противоэлектрод погружают в смесь растворителя и фонового электролита. Нужное напряжение можно определить расчетным путем или экспериментально путем промывки электролизера с использованием опорного электрода, например, серебряного электрода, погруженного в электролит электролизера. Определяют также фоновый ток ячейки – ток, протекающий в отсутствие нужного электролиза. Электролиз завершают, когда ток падает с нужного уровня до уровня фона. Таким образом можно легко обнаружить полную конверсию исходного комплекса металла. Подходящими фоновыми электролитами являются соли, содержащие катион и совместимый, не образующий координационных связей анион А–. Предпочтительными фоновыми электролитами являются соли, соответствующие формуле G+A–, где G+ – катион, нереакционноспособный в отношении исходного и получающегося в результате комплекса, и А– имеет установленные ранее значения. Примерами катионов G+ являются катионы – тетрагидрокарбилзамещенный аммоний или фосфоний, содержащие до 40 неводородных атомов. Предпочтительными катионами являются тетра(н-бутиламмоний) и тетраэтиламмоний. В процессе активации комплексов настоящего изобретения путем объемного электролиза катион фонового электролита направляется к противоэлектроду, а А– мигрирует к рабочему электроду и становится анионом получающегося в результате окисленного продукта. Или растворитель, или катион фонового электролита восстанавливается у противоэлектрода в количестве, эквимолярном количеству окисленного комплекса металла, образовавшегося на рабочем электроде. Предпочтительными фоновыми электролитами являются соли тетрагидрокарбиламмоний-тетракис(перфторарил)бораты с 1-10 атомами углерода в каждой углеводородной или перфторарильной группе, в особенности тетра(н-бутиламмоний)-тетракис(пентафторфенил)борат. Другим недавно описанным электрохимическим методом получения активирующих сокатализаторов является электролиз дисиланового соединения в присутствии источника не образующего координационных связей совместимого аниона. Этот метод полнее описывается и заявляется в упомянутой ранее заявке на патент США за регистрационным номером 304314. Вышеуказанные метод электрохимического активирования и активирующие сокатализаторы также можно использовать в сочетании. Особенно предпочтительной комбинацией является смесь соединения три(гидрокарбил)алюминия и три(гидрокарбил)борана с 1-4 атомами углерода в каждой углеводородной группе с олигомерным или полимерным алюмоксаном. Молярное соотношение используемых катализатора и сокатализатора находится предпочтительно в интервале от 1:10000 до 100:1, предпочтительнее от 1: 5000 до 10: 1, наиболее предпочтительно от 1:1000 до 1:1. Алюмоксан, когда его самого используют в качестве сокатализатора, используется в большем количестве, обычно по меньшей мере в 100 раз больше, в молярном соотношении, количества комплекса металла. Когда в качестве активирующего сокатализатора используют трис(пентафторфенил)боран, его используют в молярном соотношении с комплексом металла от 0,5:1 до 10:1, предпочтительнее от 1:1 до 6:1, наиболее предпочтительно от 1:1 до 5:1. Другие активирующие сокатализаторы обычно используют приблизительно в эквимолярном количестве с комплексом металла. Катализаторы, нанесены ли они на носители или нет в каком-либо из вышеописанных способов, могут применяться для полимеризации этилен- или ацетиленненасыщенных мономеров, содержащих от 2 до 100000 атомов углерода, или отдельных или в сочетании. Предпочтительными мономерами являются С2-20– ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() предпочтительном варианте воплощения изобретения гетерогенный катализатор получают путем соосаждения комплекса металла, инертного неорганического соединения и активатора, в особенности соли аммонийгидроксиарил(триспентафторфенил)-бората, такой как аммоний(4-гидрокси-3,5-ди-трет-бутилфенил)(триспентафторфенил)борат. Предпочтительным инертным неорганическим соединением для применения в таком варианте является три(C1-4-алкил)алюминий. Когда катализатор получают в гетерогенной форме или на носителе, каталитическую композицию используют при суспензионной или газофазной полимеризации. Практическим ограничением является то, что суспензионная полимеризация происходит в жидких разбавителях, в которых полимерный продукт, по существу, не растворяется. Предпочтительно разбавителем для суспензионной полимеризации является один или несколько углеводородов с числом атомов углерода менее 5. Если желательно, как весь разбавитель или его часть можно использовать насыщенные углеводороды, такие как этан, пропан или бутан, как весь разбавитель или его часть. Подобным образом, в качестве всего разбавителя или его части можно использовать мономер ![]() ![]() ![]() ![]() Специалисту в этой области техники будет понятно, что изобретение, описываемое здесь, можно осуществить на практике в отсутствие какого-либо компонента, который не описан конкретно. Приведенные далее примеры представляют дополнительное пояснение изобретения и не рассматриваются как ограничивающие изобретение. Если нет иных указаний, все части и проценты являются массовыми. Спектры 1H и 13С ЯМР регистрируют на спектрометре Varian XL (300 МГц). Тетрагидрофуран (ТГФ), диэтиловый эфир, толуол и гексан используют после пропускания через сдвоенные колонки, набитые активированным оксидом алюминия и смешанным (медь/марганец) металлооксидным катализатором (доступным от Engelhard Corp. ). Соединения н-BuLi, все реактивы Гриньяра, КН, инден, 1-инданон и Ni(dppp)Cl2 закупают у Aldrich. 2-Броминден, 2-метил-4-фенилинден и 2,4,6-триметилинданон синтезируют так, как описано в литературе. Все синтезы осуществляют в атмосфере сухого азота с использованием сочетания скафандра и высоковакуумной технологии. Пример 1 Синтез дихлор[N-(трет-бутил)-1,1-диметил-[3-фенилинден-1-ил]силанамин-(2-)-N] титана (называемого также диметилсилил(3-фенилинденил)(трет-бутиламидо)ТiСl2) ![]() Получение 1-фенилиндена 1-Инданон (13,30 г, 0,1006 моль) перемешивают в диэтиловом эфире (300 мл) при -78oС и в то же время добавляют PhMgBr (0,150 моль, 50,00 мл 3,0 М раствора в диэтиловом эфире). Смесь затем постепенно нагревают до 20-25oС и затем перемешивают в течение 16 часов. По завершении периода реакции смесь выливают на лед и затем экстрагируют водными растворами 1 М НСl (1 ![]() ![]() ![]() Перемешивают в гексане (300 мл) 1-фенилинден (6,00 г, 0,0312 моль) и в то же время добавляют по каплям 12,5 мл 2,5 М раствора н-BuLi (0,0312 моль) в гексане. Затем смесь перемешивают в течение 48 часов при 20-25oС и в это время в осадок выпадает твердое вещество. По завершении периода реакции твердое вещество собирают путем фильтрации под вакуумом и используют без дополнительной очистки или анализа (5,53 г, 89,4%). Получение диметилсилил(3-фенилинденил)(трет-бутил-амина) К раствору диметилсилил(трет-бутиламино)хлорида (4,62 г, 0,0279 моль) в ТГФ (100 мл) добавляют по каплям раствор литий-1-фенилинденида (5,53 г, 0,0279 моль) в ТГФ (50 мл). Эту смесь перемешивают в течение 16 часов. По завершении периода реакции летучие вещества удаляют, а остаток экстрагируют и фильтруют с использованием гексана. После удаления гексана выделяют в результате нужный продукт в виде масла (8,63 г, 96,2%). Получение диметилсилил(3-фенилинденид)(трет-бутил-амидо)дилитида Диметилсилил(3-фенилинденил)(трет-бутиламин) (8,63 г, 0,0268 моль) перемешивают в гексане (200 мл) и в то же время постепенно добавляют н-BuLi (0,0537 моль, 21,5 мл 2,5 М раствора в гексане). Затем эту смесь перемешивают в течение 16 часов и в это время образуется липкий осадок. Затем удаляют летучие вещества, а получающийся в результате желтый остаток промывают гексаном. По завершении периода реакции твердое вещество сушат и выделяют в виде желтого порошка, который используют без дополнительной очистки или анализа (8,13 г, 91,0%). Получение диметилсилил(3-фенилинденил)(трет-бутиламидо)ТiСl2 К суспензии ТiСl3(ТГФ)3 (9,03 г, 0,0244 моль) в ТГФ (30 мл) добавляют диметилсилил(3-фенилинденил)(трет-бутиламидо)Li2 (8,13 г, 0,0243 моль) в виде твердого вещества. Эту смесь перемешивают в течение 30 минут. Затем добавляют в виде твердого вещества PbCl2 (3,38 г, 0,0122 моль) и смесь перемешивают еще в течение 45 минут. По завершении периода реакции летучие вещества удаляют, а остаток экстрагируют и фильтруют с использованием толуола. В результате удаления толуола выделяют темный остаток, который затем экстрагируют гексаном, и концентрируют экстракт до выпадения твердых веществ. Осадок затем собирают посредством фильтрации и промывают холодным гексаном, выделяют в результате красно-коричневое твердое кристаллическое вещество (7,39 г, 69,1%). 1H ЯМР (CDCl3): ![]() Синтез диметил[N-(трет-бутил)-1,1-диметил-[3-фенилинден-1-ил] силанамин-(2-)-N] титана (называемого также диметилсилил(3-фенилинденил)(трет-бутиламидо)TiMe2) Перемешивают диметилсилил(3-фенилинденил)(трет-бутиламидо) TiCl2 (0,330 г, 0,000753 моль) в диэтиловом эфире (30 мл) и в то же время добавляют по каплям 0,525 мл 3 М раствора МеМgI (0,00158 моль) в диэтиловом эфире. Эту смесь затем перемешивают в течение 40 минут. По завершении периода реакции летучие вещества удаляют, а остаток экстрагируют и фильтруют с использованием гексана. В результате удаления гексана выделяют нужный продукт (0,210 г, 70,2%). 1H ЯМР (CDCl3): ![]() Синтез дихлор[N-(циклогексил)-1,1-диметил-[3-фенилинден-1-ил] силанамин-(2-)-N]титана (также называемого диметилсилил (3-фенилинденил)(циклогексиламидо)ТiСl2) ![]() Получение диметилсилил(3-фенилинденил)хлорида К раствору Me2SiCl2 (51,3673 моль) в ТГФ (150 мл) добавляют по каплям Li-1-фенилинденид (21,8736 г, 0,1104 моль) в ТГФ (75 мл). Эту смесь затем перемешивают в течение 16 часов. По завершении периода реакции летучие вещества удаляют, а остаток экстрагируют и фильтруют с использованием гексана. В результате удаления гексана выделяют нужный продукт в виде желто-красного масла (28,6183 г, 91,0%). Получение диметилсилил(3-фенилинденил)(циклогексиламина) Me2Si(3-Фенилинденил)Сl (4,7327 г, 0,01661 моль) перемешивают в гексане (100 мл) и в то же время добавляют Net3 (5,1786 г, 0,05118 моль) и циклогексиламин (1,6960 г, 0,01710 моль). Эту смесь затем перемешивают в течение 16 часов. По завершении периода реакции смесь фильтруют и удаляют летучие вещества, причем в результате выделяют нужный продукт в виде желтого масла (5,2800 г, 91,7%). Получение диметилсилил(3-фенилинденил)(циклогексиламидо)Li2 Me2Si(3-Фенилинденил)(циклогексиламин) (5,2800 г, 0,001524 моль) перемешивают в гексане (150 мл) и в то же время постепенно добавляют н-BuLi (0,034 моль, 17,00 мл 2,5 М раствора в гексане). Эту смесь перемешивают в течение 16 часов и за это время смесь становится густым однородным маслом. По завершении периода реакции летучие вещества удаляют, причем в результате выделяют светло-желтое твердое вещество. Это твердое вещество затем промывают гексаном, а затем сушат и в результате выделяют светло-желтый порошок, который используют без дополнительной очистки или анализа (4,4410 г, 81,35%). Получение диметилсилил(3-фенилинденил)(циклогексиламидо)TiCl2 Me2Si(3-Фенилинденил)(циклогексиламидо)Li2 (3,7346 г, 0,01042 моль) в ТГФ (50 мл) добавляют по каплям к суспензии ТiСl3(ТГФ)3 (3,8613 г, 0,01042 моль) в ТГФ (100 мл). Эту смесь перемешивают в течение 2 часов. Затем добавляют PbCl2 (1,4513 г, 0,005219 моль) в виде твердого вещества и смесь перемешивают еще в течение 45 минут. По завершении периода реакции летучие вещества удаляют, а остаток экстрагируют и фильтруют с использованием толуола. В результате удаления толуола выделяют темный остаток, который затем суспендируют в гексане и охлаждают до 0oС. Затем посредством фильтрации собирают нужный продукт в виде красно-коричневого твердого кристаллического вещества (2,7475 г, 56,8%). 1H ЯМР (CDCl3): ![]() Синтез диметил[N-(циклогексил)-1,1-диметил-[3-фенилинден-1-ил] силанамин-(2-)-N]титана (называемого также диметилсилил(3-фенилинденил)(циклогексиламидо)TiMe2) Me2Si(3-Фенилинденил)(циклогексиламидо)ТiСl2 (0,3936 г, 0,0008476 моль) перемешивают в диэтиловом эфире (75 мл) и в то же время добавляют по каплям 0,57 мл 3,0 М раствора МеМgI (0,0017 моль) в диэтиловом эфире. Эту смесь затем перемешивают в течение 3 часов. По завершении периода реакции летучие вещества удаляют, а остаток экстрагируют и фильтруют с использованием гексана. В результате удаления гексана выделяют нужный продукт в виде желто-красного остатка (0,1404 г, 39,1%). 1H ЯМР (C6D6): ![]() Полимеризацию проводят в следующих условиях. В 2-литровый реактор Парра загружают приблизительно 360 г смеси алканов – растворителя isopar-ETM (доступного от Exxon Chemicals Inc.) и 460 г стирольного сомономера. В качестве регулятора молекулярной массы добавляют водород, путем расширения при различном давлении, из 75-миллилитровой дополнительной емкости при давлении 25 ф/д2 (2070 кПа). Реактор нагревают до 90oС и насыщают этиленом при 200 ф/д2 (1,4 МПа). Предварительно смешивают в сухой камере соответствующее количество катализатора и сокатализатора (триспентафторфенилборан) в виде 0,005 М растворов в толуоле для получения молярного соотношения катализатора и сокатализатора 1:1. После нужного для предварительного смешивания периода времени раствор переносят в дополнительную емкость для катализатора и инъецируют в реактор. Условия полимеризации поддерживают в течение 30 минут по расходу этилена. Периодически добавляют дополнительное количество предварительной смеси катализатора. Получающийся в результате раствор удаляют из реактора, гасят изопропиловым спиртом и к получающемуся в результате раствору добавляют антиоксидант – фенол с пониженной реакционной способностью (IrganoxTM 1010 от Ciba Geigy Corporation). Образовавшиеся полимеры сушат в вакуумной печи при 135oС в течение 20 часов. Результаты, полученные с использованием катализаторов изобретения и катализатора для сравнения (инденил)диметил(трет-бутиламидо)силантитандиметила, приводятся в таблице. Формула изобретения
![]() где М – титан, цирконий или гафний в формальной степени окисления +2 +3 или +4; R’ – бифенил или нафтил; R* – водород или гидрокарбил; Х – галоген или метил. 2. Комплекс металла по п. 1, соответствующий формуле (I), где R* – трет-бутил или циклогексил. 3. Комплекс металла по п. 2, который представляет (3-фенилинденил)диметил(трет-бутиламидо)силантитандихлорид, (3-фенилинденил)диметил(трет-бутиламидо)силантитандиметил, (3-фенилинденил)диметил(циклогексиламидо)силантитандихлорид или (3-фенилинденил)диметил(циклогексиламидо)силантитандиметил. 4. Катализатор полимеризации олефинов, содержащий 1) комплекс металла по п. 1 и 2) активирующий сокатализатор, содержащий триспентафторфенилборан. 5. Способ полимеризации олефинов, включающий контактирование в условиях полимеризации одного или нескольких С2-100000 – ![]() РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 18.10.2003
Извещение опубликовано: 10.05.2005 БИ: 13/2005
|
||||||||||||||||||||||||||