Патент на изобретение №2185005
|
||||||||||||||||||||||||||
(54) СВЕРХВЫСОКОЧАСТОТНЫЙ (СВЧ)-ВОЗБУДИТЕЛЬ БЕЗЭЛЕКТРОДНОЙ ГАЗОРАЗРЯДНОЙ ЛАМПЫ
(57) Реферат: Изобретение относится к области светотехники и техники СВЧ, в частности к возбудителям безэлектродных СВЧ-газоразрядных ламп и оптическим излучателям на их основе, используемым для создания потоков оптического излучения в видимой или ультрафиолетовой частях спектра. Техническим результатом является повышение качества формирования светового потока и надежности работы устройства в условиях его эксплуатации, а также улучшение воспроизводимости и технологичности в условиях производства. Для этого в предлагаемом СВЧ-возбудителе безэлектродной газоразрядной лампы, содержащем сферическую лампу, размещенную в зоне пучности электрического СВЧ-поля осесимметричного СВЧ-резонатора, имеющего светопрозрачную цилиндрическую боковую стенку и две торцевые стенки, по меньшей мере одна из которых выполнена светонепроницаемой, торцевые стенки выполнены в виде сегментов сферических поверхностей, центры кривизны которых совмещены с центром сферы безэлектродной лампы. 2 ил. Настоящее изобретение относится к области светотехники и техники СВЧ. В более узком приложении заявляемый объект относится к осветительным и облучательным устройствам, используемым для создания потоков оптического излучения в видимой или в ультрафиолетовой (УФ) частях спектра. В конкретном идеологическом и конструктивном построении заявляемый объект относится к возбудителям безэлектродных СВЧ-газоразрядных ламп и оптическим излучателям на их основе. Известны устройства СВЧ возбудителей безэлектродных ламп и соответствующих светильников, в которых лампа размещена в осесимметричном СВЧ-резонаторе, имеющем светопрозрачные стенки, например, из металлической сетки. При этом в известных устройствах безэлектродная лампа располагается в зоне пучности СВЧ-электрического поля, топография которого на выбранном рабочем виде колебаний заранее известна. В зависимости от того, на каком виде работает резонатор (TEMp, TEmnp, TMmnp) топографии поля присущи азимутальные (при m ![]() ![]() ![]() а) Несколько пониженное качество “собирания” переотраженных лучей из-за отказа от сферичности дихроичного рефлектора и в силу возможных перекосов. б) Пониженную вибро- и ударопрочность, особенно в рабочем режиме, если имеются изначальные или возникшие люфты дихроичного рефлектора в “язычках”. В условиях воздействия вибрационных и/или ударных нагрузок наличие указанных люфтов приводит к прогрессирующему выкрашиванию кромок дихроичного рефлектора. в) Плохой теплоотвод от дихроичного рефлектора, тепловой контакт которого с зажимающими язычками осуществляется по малой поверхности, и этот контакт не стабилен в эксплуатации при многократных термоциклах включения-выключения лампы, сопровождающихся “усталостью” язычков, утратой их пружинящих свойств и, соответственно, появлением люфтов, о роли которых уже говорилось выше. Из представленных аналогов все же по большинству существенных признаков устройство по патенту [1] наиболее близко к заявляемому нами объекту и, соответственно, может быть принято в качестве прототипа. Основные конструктивные признаки и недостатки прототипа [1] рассмотрены выше. Следует подробнее выделить некоторые конструктивные детали устройства, отраженные в описании и/или на фигуре из [1]. В частности, в [1] СВЧ-резонатор имеет светопрозрачный и непрозрачный цилиндрические участки, расположенные на общей продольной оси, вдоль которой размещен и диэлектрический стержень-держатель сферической безэлектродной лампы. В непрозрачном цилиндрическом участке резонатора его торцевая стенка (дно) выполнена плоской. В боковой цилиндрической стенке этого участка выполнена вдоль образующей цилиндра щель связи с СВЧ-волноводным трактом, обеспечивающая возбуждение резонатора на волне типа ТЕ11, когда в СВЧ-тракте канализируется волна типа TE10. В светопрозрачном участке СВЧ-резонатора размещены сопла системы принудительного воздушного охлаждения лампы. Эти сопла в некоторой степени переотражают (и “возмущают”) световой поток, исходящий из плазменного светящего тела лампы. Часть светового потока излучается лампой в сторону непрозрачного цилиндрического участка СВЧ-резонатора и его дна (торцевой стенки). Этот непрозрачный участок резонатора “отгорожен” дихроичным рефлектором вогнутой формы, возвращающим световой поток, идущий от лампы в сторону дна резонатора, обратно к центру лампы. Центр же лампы оптически сопряжен с внешним зеркальным рефлектором, т.е. взаимное позиционирование внешнего рефлектора, СВЧ-резонатора, лампы и дихроичного рефлектора внутри резонатора выбраны из соображений получения приемлемого уровня и формы светового потока, излучающегося устройством в целом. Эти соображения следовало бы учитывать и при выборе формы и конкретного радиуса кривизны светопрозрачной торцевой стенки СВЧ-резонатора. В [1] в тексте это обстоятельство не отражено и, судя по фигуре, центр кривизны светопрозрачной торцевой стенки резонатора не совпадает с центром сферы безэлектродной лампы. Это, наряду с уже отмечавшимися недостатками производственного и потребительского характера, также является недостатком прототипа. Устранение отмеченной совокупности недостатков является обобщенной целью нахождения новых путей в построении СВЧ-возбудителя безэлектродной лампы. Предлагаемое техническое решение ставит своей задачей в некоей компромиссной степени обеспечить повышение качества формирования светового потока и надежности работы устройства в условиях его эксплуатации при термоциклических, вибрационных и ударных нагрузках, а также улучшение воспроизводимости и технологичности в условиях производства. Технические результаты, которые могут быть получены при осуществлении предлагаемого устройства, заключаются в следующем. 1. Достигается уменьшение разброса направлений лучей, переотраженных внутри резонатора, и лучей, исходящих сквозь его светопрозрачные стенки. 2. Достигается повышенная повторяемость световых характеристик от прибора к прибору в производстве и сохранение этих характеристик в последующей эксплуатации, в том числе в условиях виброударных нагрузок. 3. Достигаются простота сборки и повышенный “выход годных” приборов в производстве, и, соответственно, снижается себестоимость продукции. Указанные технические результаты достигаются тем, что в сверхвысокочастотном (СВЧ) возбудителе безэлектродной газоразрядной лампы, содержащем сферическую лампу в зоне пучности электрического СВЧ-поля осесимметричного цилиндрического СВЧ-резонатора, имеющего светопрозрачную цилиндрическую боковую стенку и две торцевые стенки, по меньшей мере одна из которых выполнена светонепроницаемой, торцевые стенки выполнены в виде сегментов сферических поверхностей, центры кривизны которых совмещены с центром сферы безэлектродной лампы. Сопоставительный анализ предлагаемой конструкции СВЧ-возбудителя с уровнем техники и отсутствие описания аналогичных технических решений в известных источниках информации позволяет сделать вывод о соответствии предлагаемого устройства критерию “новизна”. Заявленное устройство характеризуется совокупностью признаков, проявляющих новые качества, что позволяет сделать вывод о соответствии критерию “изобретательский уровень”. На фиг. 1 схематично показано в продольном разрезе устройство СВЧ-возбудителя с СВЧ-резонатором, работающим на ТЕ111 – виде колебаний. На фиг. 2 схематично показано в продольном разрезе устройство СВЧ-возбудителя с СВЧ-резонатором, работающим на TE112 виде колебаний. На фиг. 1 безэлектродная СВЧ-газоразрядная лампа 1 сферической формы установлена в СВЧ-резонаторе 2 на его продольной оси, как и в известных конструкциях, в зоне пучности СВЧ-электрического поля рабочего ТЕ111 – вида колебаний. Крепление лампы 1 осуществлено с возможностью вращения (двигатель и его приводной вал на фиг.1 не показаны) посредством центрального стержня-держателя 3 из диэлектрического материала (кварца). СВЧ-резонатор 2 в конкретном изображении на фиг.1 имеет цилиндрическую боковую стенку 4, состоящую из сетчатого (светопрозрачного) участка 5 и непрозрачного участка 6. Сквозь указанный непрозрачный участок 6 боковой стенки 4 в СВЧ-резонатор 2 введен СВЧ-излучатель 7, являющийся элементом электродинамической связи резонатора 2 с внешним СВЧ-трактом 8, канализирующим СВЧ-энергию накачки от непоказанного СВЧ-генератора. В данном исполнении (фиг.1) СВЧ-тракт 8 показан в виде коаксиальной линии передачи, что не является принципиальным в заявляемом объекте. Для иллюстрации иного исполнения на фиг.2 показан волноводный СВЧ-тракт. Что же касается особенностей построения и реализуемости устройства СВЧ-возбудителя с излучателем, “питаемым” от коаксиальной линии передачи 8, то они отражены в Патенте RU 2161815 по кл. Н 05 В 41/24, H 01 J 65/04, опубл. в Бюл. 1 от 10.01.2001, автор Шлифер Э.Д. – [6]. На фиг. 1 непосредственно с цилиндрическим участком 6 стыкуется светонепрозрачная торцевая стенка 9, светоотражающая сферическая поверхность 10 которой, обращенная к лампе 1, отполирована и образует контрзеркало. Радиус этой сферической поверхности R1 выбран из условия схождения переотраженных лучей в центре светящего тела лампы 1. Иными словами, центр кривизны поверхности 10 совмещен с центром сферы безэлектродной лампы 1. Этим достигается уменьшение доли “хаотичных” переотражений светового потока в СВЧ-резонаторе 2 и, соответственно, повышается “выход” световых лучей требуемого направления сквозь светопрозрачный участок 5 боковой стенки 4 к внешнему рефлектору 11. Этот рефлектор 11 показан условно. Если это параболоид вращения, то его фокус должен быть совмещен с центром сферы лампы 1. Аналогичная идеология распространяется и на конфигурацию второй торцевой стенки 12 – светопрозрачной (что, впрочем, не всегда обязательно, т.к. могут быть востребованы построения СВЧ-возбудителя, в которых торцевая стенка 12 светонепрозрачна). Так или иначе, согласно идее настоящего изобретения торцевая стенка 12 также выполнена в форме сферического контрзеркала, отражающая поверхность которого 13 имеет в общем случае другой радиус R2, но тот же центр кривизны, что и поверхность 10 стенки 9, т.е. центры кривизны всех переотражающих зеркал (10 и 13) соответственно стенок 9 и 12 совмещены с центром сферы лампы. На фиг. 2 схематично представлено исполнение заявляемого объекта для случая использования ТЕ112 вида колебаний в СВЧ-резонаторе 2. Сходные позиции обозначены теми же номерами, что и на фиг.1. В этом исполнении (фиг.2) так же, как и на фиг.1, можно использовать СВЧ-излучатель 7 и коаксиальный СВЧ тракт 8. Но для демонстрации неединственности такого построения на фиг.2 СВЧ-излучатель 14 выполнен в виде щели в боковой стенке 4 (в непрозрачном ее участке 6) резонатора 2, а в качестве СВЧ-тракта 15 СВЧ-накачки использован волновод. Работу заявленного устройства рассмотрим на примере его исполнения, представленного на фиг.1. При подаче СВЧ-энергии накачки по тракту 8 излучатель 7 возбуждает на рабочей частоте ТЕ111-вид колебаний в СВЧ-резонаторе 2, в котором размещена безэлектродная лампа 1, приводимая во вращение перед подачей СВЧ-энергии. Поскольку в показанном на фиг.1 положении лампа расположена в зоне пучности СВЧ-электрического поля (на рабочем виде колебаний) в стартовом газе-наполнителе лампы (например, в аргоне) и насыщенных парах рабочего вещества (например, серы) возникает и быстро развивается безэлектродный СВЧ-разряд, который благодаря вращению лампы приобретает симметричную (сферическую) форму и, соответственно, светящее плазменное тело в установившемся режиме становится как бы квазиточечным источником света в центре сферы лампы 1. Исходящие лучи частично выходят сквозь светопрозрачные стенки 5 и 12 СВЧ-резонатора 2 к внешнему рефлектору 11 и в пространство, а частично многократно переотражаются внутри резонатора 2. Благодаря введению (согласно реализуемого построения заявляемого объекта) контрзеркал 9, 12 со сферической отражающей поверхностью 10, 13 часть переотраженных лучей возвращается к центру светящего тела, что приводит к снижению “хаотичности” в переотражениях и пополнению исходящего (полезного) светового потока “правильно” направленными лучами. При работе заявляемого устройства в условиях виброударных нагрузок контрзеркала 9, 12, как не имеющие свободы перемещения, остаются в позиции, оптимизированной при проектировании и сохраняемой при изготовлении. Конечно, ограничения по вибро- и ударопрочности существуют и определяются прочностью диэлектрического стержня-держателя поз. 3, консольно удерживающего безэлектродную лампу. Но эти ограничения не связаны с введением контрзеркала. Иными словами, введение улучшений в формировании светового потока не сопровождается утратой полезных качеств. Формула изобретения
РИСУНКИ
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 28.03.2008
Извещение опубликовано: 20.04.2010 БИ: 11/2010
|
||||||||||||||||||||||||||