Патент на изобретение №2184845

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2184845 (13) C1
(51) МПК 7
E21B47/022
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 10.05.2011 – прекратил действие

(21), (22) Заявка: 2001109367/03, 06.04.2001

(24) Дата начала отсчета срока действия патента:

06.04.2001

(45) Опубликовано: 10.07.2002

(56) Список документов, цитированных в отчете о
поиске:
SU 1139835 A, 15.02.1985. SU 1078041 А, 07.03.1984. SU 1155733 А, 15.05.1985. SU 1615348 A1, 23.12.1990. RU 2078204 С1, 27.04.1997. RU 2101487 С1, 10.01.1998. RU 2110684 С1, 10.05.1998. RU 2166084 С1, 27.04.2001. US 4844923 A, 23.01.1990. GB 2205166 А, 30.11.1988. GB 2296772 А, 10.07.1996. FR 2492882 A, 30.04.1982. FR 2615899 A, 02.12.1988. DE 3135743 А1, 19.05.1982. WO 97/14933 A3, 24.04.1997. ЕР 0109830 А2, 30.05.1984.

Адрес для переписки:

450062, г.Уфа, ул. Космонавтов, 1, Уфимский государственный нефтяной технический университет

(71) Заявитель(и):

Уфимский государственный нефтяной технический университет

(72) Автор(ы):

Ковшов Г.Н.,
Коловертнов Г.Ю.,
Бондарь В.А.,
Федоров С.Н.

(73) Патентообладатель(и):

Уфимский государственный нефтяной технический университет

(54) УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ УГЛОВ ИСКРИВЛЕНИЯ СКВАЖИНЫ И ПОЛОЖЕНИЯ ОТКЛОНИТЕЛЯ ПРИ БУРЕНИИ


(57) Реферат:

Изобретение относится к промысловой геофизике и может быть использовано при разработке инклинометрических устройств для измерения в процессе бурения азимута, зенитного угла скважины, а также измерения угла, установки отклонителя при ориентировании инструмента в скважине. Изобретение решает задачу повышения точности определения углов ориентации в процессе бурения в широком диапазоне температур и расширения области применения устройства при бурении в высоких широтах. Поставленная задача достигается тем, что устройство содержит генератор возбуждения, датчик азимута, выполненный в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, датчик угла установки отклонителя, выполненный в виде синусно-косинусного вращающегося трансформатора, установленного в поплавковом маятнике, два коммутатора, блок управления, аналого-цифровой преобразователь. Дополнительно устройство снабжено тремя акселерометрами, оси чувствительности которых взаимно ортогональны и соосны осям чувствительности феррозондов, низкочастотными фильтрами, датчиком температуры, последовательным адаптером. При этом выходы акселерометров через низкочастотные фильтры и датчик температуры соединены с дополнительными входами коммутатора. К выходу аналого-цифрового преобразователя подключен вход последовательного адаптера, выход которого через блок связи с наземным устройством и блок дешифрации подключен к персональной ЭВМ. 1 ил.


Предлагаемое изобретение относится к контролю за пространственным положением ствола скважины и положения отклонителя в процессе бурения нефтяных и газовых скважин.

Известны способ и устройство определения азимута и зенитного угла наклонной скважины измерением трех проекций векторов гравитационного и магнитного полей Земли на трехгранник ортогональных осей скважинного снаряда посредством трехосных акселерометров и магнитометров. Выходные сигналы с датчиков поступают в ЭВМ, а после обработки и вычисления выдаются в виде азимутальных и зенитных углов на дисплее ЭВМ. Патенты Великобритании 2205166, 1988 г.

Недостатком устройств, реализованных по этому способу, является зависимость результатов измерений от вибрационных и ударных перегрузок, сопровождающих процесс бурения. При этом ошибки акселерометров от вибраций достигают значительных величин и требуют остановки процесса бурения для измерений азимута, зенитного угла, угла положения отклонителя. Если азимутальный и зенитный углы наклонной скважины изменяются во времени медленно и могут быть измерены в момент прекращения процесса бурения, то положение отклонителя при бурении должно контролироваться непрерывно, т.к. реактивный момент от долота и упругий момент колонны труб стремится развернуть отклонитель от заданного направления. Неконтролируемое положение отклонителя приводит к изменению плановой траектории скважины.

Применимое в некоторых случаях определение положения отклонителя при бурении посредством феррозондов по магнитному полю Земли при известном азимутальном и зенитном углах, измеренных при остановках бурения, также имеет ограничение. Так при бурении наклонно-направленной скважины, совпадающей с вектором напряженности магнитного поля Земли (МПЗ), положение отклонителя по МПЗ не может быть определено. Особенно это существенно при бурении в высоких широтах, где вектор напряженности МПЗ близок к вертикали. Именно в этих областях в настоящее время бурится наибольшее количество скважин.

Известно устройство для контроля комплекса параметров траектории скважин и угла установки отклонителя, содержащее генератор возбуждения, датчик азимута, выполненный в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, датчик зенитного угла и угла установки отклонителя, выполненный в виде двух синусно-косинусных вращающихся трансформаторов, установленных в рамках-маятниках, два коммутатора, блок управления, аналого-цифровой преобразователь. Авт. свид. СССР 1078041, Е 21 В 47/02, Б. И. 9, 1984.

Недостатком известного устройства является невысокая точность определения азимута (до2% в диапазоне 0360o). Из-за сил сухого трения в опорах подвеса маятников и нелинейности статических характеристик электрических датчиков их углов поворота, а также зависимости результатов измерений от температуры, достигающих значительной величины на больших глубинах.

Наиболее близким техническим решением к заявляемому изобретению является устройство для определения углов искривления скважины, содержащее блок возбуждения, датчики азимута с тремя ортогональными феррозондами, неподвижно закрепленными относительно корпуса устройства, датчик угла отклонения, два коммутатора, блок управления, аналого-цифровой преобразователь. Устройство имеет реверсивный счетчик, блок памяти, что позволяет уменьшить ошибки, возникающие вследствие влияния температуры. Авт. свид. СССР 1139835, Е 21 В 47/02, Б.И. 6, 1985.

Недостатками известного устройства являются невысокая точность определения азимута и зенитного углов особенно при малых зенитных углах от влияния сил сухого трения в опорах датчиков угла отклонения, а также сложность схемных решений при компенсации влияния температуры.

Изобретение решает техническую задачу повышения точности определения углов в процессе бурения.

Поставленная цель достигается тем, что устройство для определения углов искривления скважины и положения отклонителя при бурении, содержащее наземный блок, соединенный со скважинным снарядом, включающим генератор возбуждения, подключенный к одному из входов первого коммутатора, ко второму входу которого и к первому входу второго коммутатора подключены выходы блока управления, а выходы первого коммутатора соединены со входами датчика азимута, выполненного в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, и датчика угла установки отклонителя, выполненного в виде синусно-косинусного вращающегося трансформатора, установленного в поплавковом маятнике, выходы которых через детекторы подключены ко второму и третьему входам второго коммутатора, соединенного выходом со входом аналого-цифрового преобразователя, отличающееся тем, что скважинный снаряд снабжен тремя акселерометрами, оси чувствительности которых взаимно ортогональны и соосны осям чувствительности феррозондов, низкочастотными фильтрами, датчиком температуры, последовательным адаптером и блоком связи, а наземный блок снабжен узлом дешифрации и связи и персональной ЭВМ, соединенной узлом дешифрации и связи, который через блок связи соединен с входом блока управления скважинного снаряда и с выходом последовательного адаптера, вход которого соединен с выходом аналого-цифрового преобразователя, при этом выходы акселерометров через соответствующие низкочастотные фильтры и выход датчика температуры подключены соответственно к четвертому, пятому, шестому и седьмому входам второго коммутатора.

На чертеже представлена блок-схема устройства.

Устройство содержит скважинный снаряд, 1, включающий датчик азимута 2 на трех взаимно ортогональных феррозондах 3, 4, 5, датчик угла установки отклонителя 6, выполненного в виде синусно-косинусного вращающегося трансформатора (СКВТ), установленного в поплавковом маятнике, 7 – статорные обмотки СКВТ, 8 – роторная обмотка СКВТ, трехосного акселерометра 9, состоящего, например, из трех линейных акселерометров 10, 11, 12, датчик температуры 13. Оси чувствительности феррозондов и акселерометров ортогональны и образуют трехгранник координатных осей, неподвижно связанных со скважинным снарядом. При этом оси чувствительности феррозондов соосны осям чувствительности соответствующих акселерометров. Электрический нуль датчика угла установки отклонителя совмещен с нулем положения отклонителя, вычисленного по показаниям акселерометров. Кроме того, в скважинном снаряде размещены генератор возбуждения 14, первый 15 и второй 16 детекторы, первый 17 и второй 18 коммутаторы, низкочастотные фильтры 19, 20, 21 акселерометров, блок управления коммутатором 22, аналого-цифровой преобразователь (АЦП) 23, последовательный адаптер 24, блок связи с наземным устройством 25. Наземный блок 26 содержит источники питания скважинного снаряда, узел дешифрации сигналов и связи 27 с персональной ЭВМ 28.

Устройство работает следующим образом.

Для измерения азимута, зенитного угла, угла установки отклонителя и температуры с наземного блока 26 на блок управления 22 и коммутаторы 17, 18 поступает запускающий импульс. Генератор 14 формирует сигнал возбуждения, который через коммутатор 17 подается попеременно на обмотки возбуждения феррозондов 3, 4, 5 и статорные обмотки 7 СКВТ. При наличии магнитного поля Земли (МПЗ) в сигнальных обмотках феррозондов появляется выходное напряжение, пропорциональное проекции вектора напряженности МПЗ на оси чувствительности феррозондов. Напряжения с сигнальных обмоток феррозондов поочередно подаются на фазочувствительный детектор 15 и через второй коммутатор 18 на аналого-цифровой преобразователь 23. Напряжение с генератора 14 подается и на статорные обмотки 7 СКВТ, при этом напряжение с роторной обмотки 8, функционально связанное с углом поворота маятника, датчика 6, после детектирования в блоке 16 также через коммутатор 18 поступает на вход аналого-цифрового преобразователя 23. На вход коммутатора 18 по сигналам с блока управления 22 последовательно поступают сигналы с акселерометров 10, 11, 12 через низкочастотные фильтры 19, 20, 21 и датчик температуры 13 скважинного снаряда.

Число-импульсный код, соответствующий сигналу с каждого первичного датчика, с выхода аналого-цифрового преобразователя 23 поступает на вход последовательного адаптера 24, преобразующего параллельный код в последовательный формат, и через блок связи 25 с наземным устройством поступает в оперативную память персональной ЭВМ 28. После окончания полного цикла измерения и записи в памяти ЭВМ измерения накапливаются, осредняются и после алгоритмической обработки и вычислений высвечиваются на дисплее ЭВМ в виде цифровой, графической и текстовой информации.

Для точных измерений азимута, зенитного угла, угла установки отклонителя используются сигналы с феррозондов и акселерометров при кратковременных остановках процесса бурения, вычисляемые по формулам, приведенным в монографии: Ковшов Г.Н., Алимбеков Р.И., Жибер А.В. Инклинометры (основы теории и проектирования), Уфа, Гилем, 1998, 380 с.:

Здесь обозначено , , – соответственно, азимут, зенитный угол и угол установки отклонителя, ai, bi (i=1,2,3) – приведенные безразмерные сигналы с феррозондов и акселерометров, В – магнитное наклонение.

Положение отклонителя на вертикальном участке в процессе бурения, вычисленное по магнитному полю Земли, определяется по формуле

Положение отклонителя в процессе бурения вычисляется по сигналам с маятникового датчика угла установки отклонителя:

где b1*, b2* – приведенные безразмерные сигналы с роторной обмотки СКВТ при последовательном подключении статорных обмоток СКВТ.

Несмотря на специальные схемные решения, применяемые при разработке первичных датчиков (феррозондов, акселерометров, СКВТ), температурный дрейф последних оказывается значительным. Это приводит к недопустимым погрешностям измерения азимута и зенитного углов при изменении окружающей температуры до +120oС, в котором должно работать устройство. Измерение температуры специальным датчиком, расположенным в скважинном снаряде, позволяет применить алгоритмические методы компенсации с помощью ЭВМ, если закон изменения температурного дрейфа первичных датчиков определен по предварительным температурным испытаниям устройства. Это повышает точность измерения углов в широком диапазоне температур, а также упрощает конструкцию скважинного снаряда, исключающего реверсивный счетчик и блок памяти.

Предлагается следующая последовательность использования устройства при бурении наклонно-направленных скважин. Вначале, на вертикальном участке положение отклонителя определяется посредством феррозондов по магнитному полю Земли с использованием формулы (4). Феррозонды, неподвижно закрепленные в скважинном снаряде, не реагируют на вибрационные и ударные перегрузки, сопровождающие процесс бурения, поэтому установка отклонителя проводится непосредственно при бурении. При наборе кривизны 510, положение отклонителя в процессе бурения определяется уже с использованием поплавкового маятникового датчика угла установки отклонителя, вычисленное по формулам (5). Осевые вибрационные и ударные перегрузки, направленные по оси вращения маятника, на показаниях его не сказываются.

Таким образом, предложенное устройство позволяет осуществить ориентирование отклонителя в вертикальных и наклонных стволах скважин в процессе бурения и в высоких широтах, увеличить проходку на долото и упростить процесс ориентирования. При кратковременном прекращении процесса бурения азимут и зенитный углы скважины определяются уже с большой точностью по сигналам феррозондов и акселерометров, вычисленные по формулам (1), (2), и не требуют контроля положения скважины геофизическими инклинометрами.

Таким образом, предлагаемое устройство обеспечивает повышение производительности труда при бурении наклонно-направленных скважин за счет повышения точности и надежности результатов измерений.

Стендовые и полевые испытания устройства показали, что основная погрешность измерения азимута наклонной скважины лежит в пределах 2o, зенитного угла 0,2o, угла установки отклонителя 0,2o.

Предлагаемое изобретение может быть использовано для бурения нефтяных и газовых наклонно-направленных и горизонтальных скважин, а также для прокладки пилот-скважин, бурящихся под реками для проводки газо- и нефтетрубопроводов.

Формула изобретения


Устройство для определения углов искривления скважины и положения отклонителя при бурении, содержащее наземный блок, соединенный со скважинным снарядом, включающим генератор возбуждения, подключенный к одному из входов первого коммутатора, ко второму входу которого и к первому входу второго коммутатора подключены выходы блока управления, а выходы первого коммутатора соединены со входами датчика азимута, выполненного в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, и датчика угла установки отклонителя, выполненного в виде синусно-косинусного вращающегося трансформатора, установленного в поплавковом маятнике, выходы которых через детекторы подключены ко второму и третьему входам второго коммутатора, соединенного выходом со входом аналого-цифрового преобразователя, отличающееся тем, что скважинный снаряд снабжен тремя акселерометрами, оси чувствительности которых взаимно ортогональны и соосны осям чувствительности феррозондов, низкочастотными фильтрами, датчиком температуры, последовательным адаптером и блоком связи, а наземный блок снабжен узлом дешифрации и связи и персональной ЭВМ, соединенной с узлом дешифрации и связи, который через блок связи соединен с входом блока управления скважинного снаряда и с выходом последовательного адаптера, вход которого соединен с выходом аналого-цифрового преобразователя, при этом выходы акселерометров через соответствующие низкочастотные фильтры и выход датчика температуры подключены соответственно к четвертому, пятому, шестому и седьмому входам второго коммутатора.

РИСУНКИ

Рисунок 1


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 07.04.2003

Номер и год публикации бюллетеня: 16-2004

Извещение опубликовано: 10.06.2004


Categories: BD_2184000-2184999