Патент на изобретение №2183688

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2183688 (13) C1
(51) МПК 7
C22C37/06, C22C37/10, C22C38/36, B23K35/30
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 10.05.2011 – действует

(21), (22) Заявка: 2001107108/02, 20.03.2001

(24) Дата начала отсчета срока действия патента:

20.03.2001

(45) Опубликовано: 20.06.2002

(56) Список документов, цитированных в отчете о
поиске:
US 5674449, 07.10.1997. JP 55038938 A, 18.03.1980. US 4584019, 22.04.1986. EP 0559899 A1, 15.09.1993. SU 495388, 15.04.1976.

Адрес для переписки:

300027, г.Тула, ул. Металлургов, 80А, кв.42, А.Г.Ситнову

(71) Заявитель(и):

Общество с ограниченной ответственностью фирма “Спецметаллы”

(72) Автор(ы):

Гутковский Л.Б.,
Каморин О.А.,
Кулбасов А.С.,
Логинов В.Н.

(73) Патентообладатель(и):

Общество с ограниченной ответственностью фирма “Спецметаллы”

(54) ИЗНОСОСТОЙКИЙ СПЛАВ НА ОСНОВЕ ЖЕЛЕЗА


(57) Реферат:

Изобретение относится к области металлургии, в частности к получению износостойких сплавов на основе железа. Изобретение может быть использовано для получения износостойких высокотемпературных покрытий на деталях металлургического оборудования, в частности, наносимых дуговой наплавкой. Предложен износостойкий сплав, содержащий следующие компоненты, мас.%: углерод 4,5-5,5, хром 19,0-24,0, молибден 5,5-7,0, ниобий 6,0-8,0, вольфрам 1,0-2,0, ванадий 0,5-1,0, железо остальное. Сплав дополнительно содержит флюсующие добавки – кремний и/или бор в количестве, мас.%: кремний 1,0-4,0, бор 0,01-0,8. Эффективность применения сплава обусловлена высокой твердостью и износостойкостью при повышенных температурах, технологичностью нанесения и низкой стоимостью. 2 з.п. ф-лы, 2 табл.


Изобретение относится к области металлургии, конкретно к получению износостойких сплавов на основе железа. Изобретение может быть использовано для получения износостойких высокотемпературных покрытий на деталях металлургического оборудования, в частности, наносимых дуговой наплавкой.

В промышленности (машиностроении, металлургии, строительстве и т.д.) широко применяются для изготовления и ремонта деталей сплавы на основе железа, износостойкость которых обеспечивается за счет мелкодисперсных твердых включений карбидов, боридов, силицидов в металлической матрице.

Известен износостойкий сплав на основе железа, имеющий структуру с равномерно распределенными частицами карбидов размером 30-50 мкм и содержащий компоненты в следующем соотношении, мас.%:
Углерод – 1,0-3,0
Хром – 6,1-20
один или несколько элементов из:
Молибден – 0,5-10
Вольфрам – 0,5-10
Никель – 0,5-10
Кобальт – 0,5-10
Ниобий – 0,2-5,0
Тантал – 0,5-5,0
Ванадий – 0,2-0,5
Железо – Остальное
при этом суммарное содержание хрома, молибдена, вольфрама, ванадия, ниобия и тантала не более 20% (Jp 55038938 А, МПК С 22 С 38/26, 1980).

Данный сплав применяется для поверхностного упрочнения рабочих поверхностей рокеров в ДВС и обеспечивает достаточную износостойкость в парах трения при повышенных температурах. Однако жидкотекучесть и флюсующие свойства сплава недостаточны для его применение при наплавке.

Известен также железоникелевый сплав (US 4292074, МПК С 22 С 30/00, 1981), содержащий компоненты, мас.%:
Углерод – 0,5-2,0
Никель – 30-60
Железо – 30-60
Кремний – 6,0-10,0
Бор – 0,5-3,0
Хром, молибден и вольфрам находятся в сплаве в виде карбидов и боридов, сумма которых составляет 2,0-8,0%, а никель и железо образуют соответственно силициды и бориды.

Данный сплав хорошо наплавляется, однако в условиях интенсивного абразивного износа при высоких температурах его стойкость недостаточна ввиду отсутствия ниобия и ванадия, которые повышают ударную вязкость и горячую твердость.

Наиболее близким к заявляемому техническому решению является высокотемпературный износостойкий сплав на основе железа с высокой горячей твердостью и стойкостью к окислению (US 5674449, МПК С 22 С 38/24, 1997 – прототип).

Он содержит, мас.%:
Углерод – 1,0-2,8
Хром – 3,0-16,0
Молибден – До 14,0
Вольфрам – До 14,0
Ниобий – 0,5-5,0
Ванадий – 1,0-8,0
Кобальт – 2,0-12,0
Железо – Остальное
при этом сумма (молибден + вольфрам) = 6-14%.

Данный сплав применяется для изготовления деталей с финишной механической обработкой, например седел клапанов ДВС, и имеет твердость 54-56 HRC. Из-за использования кобальта стоимость высока, а его твердость недостаточна для работы в условиях высоких температур и абразивного изнашивания.

Технической задачей изобретения является создание износостойкого сплава для работы в условиях высоких температур и интенсивного абразивного изнашивания с хорошей технологичностью наплавки и низкой стоимостью.

Технический результат достигается тем, что предложен износостойкий сплав на основе железа, содержащий углерод, хром, молибден, ниобий, вольфрам, ванадий, отличающийся тем, что он дополнительно содержит флюсующие добавки – кремний и/или бор, при следующем соотношении компонентов, мас.%:
Углерод – 4,5-5,5
Хром – 19,0-24,0
Молибден – 5,5-7,0
Ниобий – 6,0-8,0
Вольфрам – 1,0-2,0
Ванадий – 0,5-1,0
Кремний – 1,0-4,0
Бор – 0,01-0,8
Железо – Остальное
Введение в состав сплава флюсующих добавок – кремния и/или бора – способствует повышению технологичности наплавки за счет образования легкоплавких эвтектик и связывания кислорода в шлаки, всплывающие на поверхность. Данные элементы также повышают износостойкость при высоких температурах за счет дополнительного образования силицидов и боридов, а также сложных твердых фаз с участием бора, кремния и углерода.

Присутствие бора в высокоуглеродистом сплаве начиная с 0,01% снижает склонность к графитизации и усиливает процессы карбидообразования, повышая тем самым твердость и износостойкость. При увеличении доли бора более 0,8% твердость растет, материал становится слишком хрупким, его трещиностойкость снижается.

Введение кремния начинает оказывать заметное влияние на технологичность наплавки начиная с 1%, а увеличение его содержания более чем до 4% повышает хрупкость наплавленных слоев и количество дефектов в них (поры, трещины, включения).

Данный материал представляет собой металлическую матрицу – сплав на основе железа, в которой равномерно распределены мелкодисперсные тугоплавкие металлоподобные фазы – карбиды (Cr3C2, VC, NbC, Мо2С, WC), бориды (CrB2, VB2, NbB2, Mo2B5, W2B5), силициды (CrSi2, VSi2, NbSi2, MoSi2, WSi2) и др. подобные соединения. Упрочняющие фазы имеют высокую температуру плавления (более 2200oС для боридов, более 1900oС для карбидов и более 1500oС для силицидов), они жаропрочны и жаростойки. Микротвердость боридов превышает 25 ГПа, карбидов – 13 ГПа и силицидов – 7 ГПа, что обеспечивает высокую износостойкость сплавов, упрочненных данными соединениями.

Химический состав данного сплава выбран экспериментально и указан в табл. 1.

Для получения сплава изготавливали наплавочную порошковую ленту размером 16,5 х 3,8 мм, которая затем наплавлялась на пластины из низкоуглеродистой стали размером 300 х 250 х 40 мм. Наплавку проводили в 2 слоя общей толщиной 4-5 мм на площадку 200 х 150 мм.

Режим наплавки:
сварочный ток 800 А; напряжение на дуге 30 В; вылет электрода 50 мм; размах колебаний электрода 180 мм; шаг наплавки 10 мм; скорость наплавки 32 м/час.

Проводили измерения твердости и исследования структуры материала после наплавки и, с целью определения стабильности свойств при термическом воздействии, после термообработки на воздухе при 600oС в течение 1 часа (загрузка в горячую печь и охлаждение при комнатной температуре). Металлографическим методом определяли наличие пор, трещин, включений, рыхлот в наплавленном слое и на границе с основным металлом. Результаты исследований приведены в табл. 2.

Процесс наплавки стабилен, разбрызгивание металла – в пределах технологических требований, поры, трещины и шлаковые включения на поверхности и в глубине слоя незначительны.

После наплавки материал находится в неравновесном состоянии, и последующая термообработка, приводя к снятию напряжений и стабилизации структуры, одновременно снижает твердость ряда составов в пределах 1-2 единиц HRC. Увеличение доли легирующих и флюсующих элементов приводит к росту твердости. Структура и свойства наплавленного сплава после термообработки с точки зрения эксплуатационных свойств изменились незначительно, что обеспечивает стабильную износостойкость материала при высоких температурах.

Технико-экономическая эффективность применения данного сплава в металлургии обусловлена сочетанием высокой твердости и износостойкости при повышенных температурах с технологичностью нанесения и низкой стоимостью.

Стоимость кобальтсодержащих материалов (по прототипу) на 10-20% выше, чем у предлагаемых сплавов.

Заявленные сплавы были использованы для нанесения защитного покрытия методом электродуговой наплавки на рабочую поверхность лотков засыпных аппаратов доменной печи. По результатам промышленных испытаний стойкость лотков превышает 6 месяцев, что обеспечивает эксплуатацию засыпных аппаратов в течение всего межремонтного периода.

Формула изобретения


1. Износостойкий сплав на основе железа, содержащий углерод, хром, молибден, ниобий, вольфрам, ванадий, отличающийся тем, что он дополнительно содержит флюсующие элементы – кремний и/или бор при следующем соотношении компонентов, мас.%:
Углерод – 4,5-5,5
Хром – 19,0-24,0
Молибден – 5,5-7,0
Ниобий – 6,0-8,0
Вольфрам – 1,0-2,0
Ванадий – 0,5-1,0
Флюсующие элементы – кремний и/или бор – 0,01-4,0
Железо – Остальное
2. Износостойкий сплав по п.1, отличающийся тем, что в качестве флюсующего элемента он содержит кремний в количестве 1,0-4,0%.

3. Износостойкий сплав по п.1, отличающийся тем, что в качестве флюсующего элемента он содержит бор в количестве 0,01-0,8%.

РИСУНКИ

Рисунок 1, Рисунок 2


PC4A – Регистрация договора об уступке патента Российской Федерации на изобретение

Прежний патентообладатель:

Общество с ограниченной ответственностью фирма “Спецметаллы”

(73) Патентообладатель:

Гутковский Леонид Борухович

Дата и номер государственной регистрации перехода исключительного права: 04.03.2008 № РД0033435

Извещение опубликовано: 20.04.2008 БИ: 11/2008


Categories: BD_2183000-2183999