Патент на изобретение №2183065
|
||||||||||||||||||||||||||
(54) СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПРОЦЕССОМ ГОРЯЧЕГО КОПЧЕНИЯ РЫБЫ
(57) Реферат: Изобретение может быть использовано при автоматизации процесса горячего копчения рыбы. Способ автоматического управления процессом горячего копчения рыбы предусматривает измерение влажности, расхода и температуры исходного продукта после каждого вида термообработки, температуру и расход теплоносителя с коррекцией соответствующих параметров. Воздух, подаваемый на подсушку рыбы, сначала направляют на предварительный подогрев в конденсатор теплонасосной установки, а затем на подогрев в теплообменник-рекуператор за счет теплоты отработанного коптильного дыма. Коптильный дым после проварки рыбы направляют на ее копчение и далее в теплообменник-рекуператор, охлаждение рыбы осуществляют в замкнутом контуре по охлажденному воздуху в испарителе теплонасосной установки. Часть отработанного охлажденного воздуха из замкнутого контура направляют на смешивание с коптильным дымом, подаваемым с проварки на копчение. Измеряют расход и температуру воздуха после рекуператора теплообменника, подаваемого на подсушку, расход, температуру, относительную влажность коптильного дыма перед проваркой, температуру, относительную влажность и расход смеси коптильного дыма и отработанного охлажденного воздуха перед копчением, температуру и расход охлажденного в испарителе теплонасосной установки воздуха и по текущим значениям влажности и расхода рыбы, подаваемой на подсушку, сначала устанавливают необходимый тепловой поток воздуха на подсушку воздействием на его расход путем изменения мощности регулируемого привода вентилятора, с коррекцией по влажности рыбы, подаваемой с подсушки на проварку. Затем устанавливают необходимый термовлажностный режим проварки рыбы воздействием на расход коптильного дыма с коррекцией по влажности рыбы после проварки. Устанавливают необходимый температурный режим копчения с коррекцией по влажности рыбы после копчения путем воздействия на расход части отработанного охлажденного воздуха, подаваемого из замкнутого контура на смешивание с коптильным дымом. Стабилизируют режим охлаждения рыбы с воздействием на температуру охлажденного воздуха путем изменения холодопроизводительности теплонасосной установки и его расхода в замкнутом контуре посредством изменения мощности регулируемого привода вентилятора. Изобретение направлено на повышение энергетической эффективности варочно-сушильного процесса, улучшение качества готового продукта, создание безотходной и экологически чистой технологии копчения рыбы. 1 ил. Изобретение относится к автоматизации технологических процессов и может быть использовано при автоматизации процесса горячего копчения рыбной продукции. Известен способ автоматического управления процессом холодного копчения рыбы (А.с. 1762852 СССР, МКИ5 Недостатком этого способа является то, что он не решает задач утилизации и рекуперации вторичных энергоресурсов за счет использования отработанных теплоносителей, что не создает реальных перспектив в значительном снижении энергозатрат на всех стадиях горячего копчения, включая подсушку, проварку, собственно копчение и охлаждение рыбной продукции. Наиболее близким по своей технической сущности и достигаемому эффекту является способ автоматического управления процессом горячего копчения, предусматривающий измерение влажности расхода и температуры исходного продукта после каждого вида термообработки, температуру и расход теплоносителя с коррекцией соответствующих параметров (RU 2113132 С1, 20.06.1998). Однако в известном способе не созданы условия полной утилизации и рекуперации вторичных энергоресурсов; не предусмотрена коррекция режима в условиях случайных возмущений на всех стадиях горячего копчения, включая подсушку, проварку, собственно копчение и охлаждение рыбной продукции; не реализованы принципы энергосбережения, в том числе не предусмотрено использование теплонасосной установки для предварительного подогрева воздуха в конденсаторе, направляемого на подсушку, и подготовки охлаждающего воздуха в испарителе, направляемого на охлаждение рыбы, с организацией замкнутого контура его рециркуляции; а также отсутствует программно-логический алгоритм функционирования системы управления процессом горячего копчения рыбы в условиях частично и полностью замкнутых циклов по тепловым потокам. Задачей изобретения является повышение энергетической эффективности процесса горячего копчения рыбы, улучшение качества готового продукта, создание малоотходной и экологически чистой технологии получения копченой рыбной продукции. Поставленная задача достигается тем, что в способе автоматического управления процессом горячего копчения рыбы, предусматривающем измерение влажности, расхода и температуры исходного продукта после каждого вида термообработки, температуру и расход теплоносителя с коррекцией соответствующих параметров, воздух, подаваемый на подсушку рыбы, сначала направляют на предварительный подогрев в конденсатор теплонасосной установки, а затем на подогрев в теплообменник-рекуператор за счет теплоты отработанного коптильного дыма, коптильный дым после проварки рыбы направляют на ее копчение и далее в теплообменник-рекуператор, охлаждение рыбы осуществляют в замкнутом контуре по охлажденному воздуху в испарителе теплонасосной установки, причем часть отработанного охлажденного воздуха из замкнутого контура направляют на смешивание с коптильным дымом, подаваемого с проваркой на копчение, измеряют расход и температуру воздуха после рекуператора-теплообменника, подаваемого на подсушку, расход, температуру, относительную влажность коптильного дыма перед проваркой, температуру, относительную влажность и расход смеси коптильного дыма и отработанного охлажденного воздуха перед копчением, температуру и расход охлажденного в испарителе теплонасосной установки воздуха и по текущим значениям влажности и расхода рыбы, подаваемой на подсушку, сначала устанавливают необходимый тепловой поток воздуха на подсушку воздействием на его расход путем изменения мощности регулируемого привода вентилятора, с коррекцией по влажности рыбы, подаваемого с подсушки на проварку, затем устанавливают необходимый термовлажностный режим проварки рыбы воздействием на расход коптильного дыма с коррекцией по влажности рыбы после проварки, далее устанавливают необходимый температурный режим копчения с коррекцией по влажности рыбы после копчения путем воздействия на расход части отработанного охлажденного воздуха, подаваемого из замкнутого контура на смешивание с коптильным дымом, и стабилизируют режим охлаждения рыбы с воздействием на температуру охлажденного воздуха путем изменения холодопроизводительности теплонасосной установки и его расхода в замкнутом контуре посредством изменения мощности регулируемого привода вентилятора. На чертеже представлена схема, реализующая предлагаемый способ автоматического управления. Схема содержит камеру подсушки 1, проварки 2, копчения 3 и охлаждения 4 рыбы, поршневой компрессор 5, конденсатор 6, терморегулирующий вентиль 7 и испаритель 8 теплонасосной установки, теплообменник-рекуператор 9, вентиляторы 10 и 11, линии: подачи рыбы в камеру подсушки 12, подачи рыбы из камеры подсушки в камеру проварки 13, подачи рыбы из камеры проварки в камеру копчения 14, подачи рыбы из камеры копчения в камеру охлаждения 15, отвода копченой рыбы из камеры охлаждения 16, подачи воздуха в камеру подсушки рыбы 17, подачи коптильного дыма в камеру проварки 18, отвода коптильного дыма из камеры пропарки в камеру копчения 19, отвода отработанной дымовоздушной смеси из камеры копчения 20, замкнутого контура хладагента теплоносителя установки 21, контура рециркуляции охлажденного воздуха 22, подачи части отработанного охлажденного воздуха из замкнутого контура на смешивание с коптильным дымом 23, подпитки охлажденного воздуха свежим 24, датчики: расхода 25 и начальной влажности рыбы 26, влажности рыбы соответственно после проварки 27, копчения 28 и охлаждения 29, температуры 30 и расхода 31 воздуха, подаваемого в камеру подсушки, температуры 32, расхода 33 и относительной влажности 34 коптильного дыма, подаваемого в камеру проварки, температуры 35, расхода 36 и относительной влажности 37 дымовоздушной смеси, подаваемой в камеру копчения, температуры 38 и расхода 39 охлажденного воздуха в контуре рециркуляции, температуры копченой рыбы 40 в линии отвода из камеры охлаждения, микропроцессор 41, исполнительные механизмы 42-47, (а, б, в, г, д, е, ж, з, и, к, л, м, н, о, п, р – входные каналы управления; с, т, у, ф, ц, ч – выходные каналы управления). Способ осуществляется следующим образом. По информации датчиков 25 и 26 соответственно о расходе и влажности рыбы, подаваемой в камеру подсушки 1 по линии 12, микропроцессор 41 из условия материального и теплового балансов устанавливает задание на необходимый тепловой поток, подаваемый со свежим воздухом в камеру подсушки 1 по линии 17. Свежий воздух в линии 17 предварительно нагревается сначала в конденсаторе 6 теплонасосной установки за счет тепла конденсации хладагента, циркулирующего в замкнутом контуре 21, а затем в конденсаторе-рекуператоре 9 за счет вторичного тепла отработанной дымовоздушной смеси, отводимой из камеры копчения 3 по линии 20. По текущей информации датчиков 30 и 31 соответственно о температуре и расходе подогретого свежего воздуха микропроцессор 41 определяет фактическое значение теплового потока, сравнивает его с заданным, вырабатывает сигнал отклонения фактического значения теплового потока от заданного и посредством исполнительного механизма 42 регулируемого привода вентилятора 10 воздействует на расход свежего воздуха в линии 17, устанавливая в соответствии с заданием необходимый тепловой поток для удаления поверхностной (свободной) влаги при предварительной тепловой обработке рыбы в камере подсушки 1. Учитывая возможные подсосы в воздушном тракте, а также тракте подачи рыбы на подсушку, микропроцессор 41 осуществляет непрерывную коррекцию теплового потока по текущему значению влажности рыбы в линии ее подачи 13 из камеры подсушки 1 в камеру проварки 2, измеряемой датчиком 27. При отклонении текущей влажности подсушенной рыбы от заданного значения в сторону увеличения микропроцессор 41 увеличивает расход свежего воздуха в линии его подачи 17 в камеру подсушки 1, а при отклонении влажности рыбы от заданного значения в сторону уменьшения – уменьшает расход свежего воздуха. Регулирование параметров коптильного дыма, подаваемого из дымогенератора (на схеме не показан) по линии 18 в камеру проварки 2, текущие значения которых измеряются с помощью датчиков температуры 32, расхода 33 и относительной влажности 34, микропроцессор осуществляет по текущему значению влажности рыбы, измеряемой датчиком 28, в линии ее подачи 14 из камеры проварки 2 в камеру копчения 3. При этом стабилизация влажности рыбы после проварки в заданном интервале значений достигается оперативным изменением термовлажностного режима путем воздействия на расход коптильного дыма в линии 18 посредством исполнительного механизма 43. Процесс собственно копчения рыбы осуществляют дымовоздушной смесью, образованной коптильным дымом после проварки и частью охлажденного воздуха, забираемого по линии 23 из контура рециркуляции 22 после камеры охлаждения 4. Параметры получаемой таким образом дымовоздушной смеси устанавливает микропроцессор 41 по текущему значению влажности рыбы, измеряемой датчиком 29, в линии ее подачи 15 из камеры копчения 3 в камеру охлаждения 4 путем изменения соотношения расходов коптильного дыма и охлажденного воздуха воздействием на расход охлажденного воздуха в линии 23 посредством исполнительного механизма 44. При отклонении влажности рыбы после копчения в сторону увеличения от заданного значения микропроцессор 41 уменьшает расход воздуха, подаваемого на смешивание с коптильным дымом из контура рециркуляции 22 по линии 23, а при отклонении влажности рыбы после копчения в сторону уменьшения от заданного значения – увеличивает расход воздуха. Процесс охлаждения рыбы осуществляют в камере охлаждения 4 в замкнутом контуре рециркуляции 22 по охлаждаемому воздуху в испарителе 8 теплонасосной установки. В зависимости от величины рассогласования заданного и текущего значения температуры рыбы, измеряемой датчиком 40 на выходе из камеры охлаждения 4 в линии 16, микропроцессор 41 устанавливает необходимую холодопроизводительность теплонасосной установки воздействием на мощность регулируемого привода поршневого компрессора 5 посредством исполнительного механизма 46 (изменяя либо величину хода поршня, либо число ходов поршня), обеспечивая при этом режим охлаждения воздуха в испарителе 8 теплонасосной установки до заданной температуры, контроль за которой осуществляется с помощью датчика 38, а также устанавливает расход охлаждаемого воздуха в контуре рециркуляции 22 посредством исполнительного механизма 47 регулируемого привода вентилятора 11, текущее значение которого измеряется датчиком 39. Отбор части охлаждаемого воздуха из контура рециркуляции 22 на смешивание с коптильным дымом, подаваемым по линии 23, компенсируют подпиткой охлаждаемого воздуха свежим, подаваемым по линии 24. Поэтому микропроцессор 41 обеспечивает синхронизированную работу исполнительных механизмов 44 и 45. В качестве конкретного примера по реализации способа рассматривается технология получения рыбы горячего копчения на предприятии “Восток” (холодильник Воронежского облпотребсоюза) в установке туннельного типа для производства провесных и вяленых рыботоваров производительностью по исходной рыбе от 700 до 3500 кг/сутки. Пределы регулирования основных технологических параметров процессов подсушки, проварки, копчения и охлаждения рыбы обоснованы в результате экспериментальных исследований и широко представлены в литературе [1, 2, 3]. В качестве объекта горячего копчения использовалась замороженная скумбрия с начальной влажностью 82…85%. Номинальная производительность установки по исходной скумбрии, предварительно прошедшей технологические операции по размораживанию, сортировке, разделке, вкусовому посолу и укладке на транспортирующую сетку, составляет 1000 кг/сутки. Для утилизации и рекуперации вторичных энергоресурсов туннельная установка снабжена компрессорно-конденсаторным агрегатом ФАК – 1,1Е, работающим в режиме теплового насоса, со следующими характеристиками: Компрессор – 2ФВ – 4/4,5 одноступенчатый фреоновый двухцилиндровый – (R12) Холодопроизводительность, кВт – 1,28 Диапазон температур кипения, oС – -25…0 Мощность электродвигателя, кВт – 1,1 Конденсатор, м2, воздушный, ребристый – 4,95 По информации датчиков 25 и 26 соответственно о фактическом расходе, например 50 ![]() ![]() ![]() ![]() ![]() ![]() ![]() – если W1>80 ![]() – если W1<80 ![]() – если W1= 80 ![]() ![]() – если W3>64 ![]() – если W3<64 ![]() – если W3= 64 ![]() – обеспечивает высокую тепловую эффективность предлагаемой технологии за счет рационального использования вторичных энергоресурсов; – позволяет получить готовый продукт высокого качества за счет накладываемых ограничений на управляемые параметры и их оперативной коррекции в условиях случайных возмущений на всех этапах производства рыбопродуктов горячего копчения, включая процессы подсушки, проварки, собственно копчения и охлаждения; – обеспечивает снижение удельных энергозатрат на 15…25% за счет реализации таких принципов энергосбережения по утилизации и рекуперации вторичной энергии, как организация замкнутых циклов по энергоносителям, использование рекуператоров вторичных энергоресурсов, применение теплового насоса, – позволяет повысить экологическую безопасность за счет снижения выбросов отработанных теплоносителей в атмосферу. Источники информации 1. Чупахин В.М. Технологическое оборудование рыбообрабатывающих предприятий. – М.: Пищевая промышленность, 1976, – 472 с. 2. Никитин Б. Н. Основы теории копчения рыбы. – М.: Легкая и пищевая промышленность, 1982, – 248 с. 3. Шиф И.Г. Тепловое оборудование рыбообрабатывающих предприятий. – М.: Легкая и пищевая промышленность, 1981, – 224 с. Формула изобретения
РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 12.09.2002
Номер и год публикации бюллетеня: 14-2004
Извещение опубликовано: 20.05.2004
|
||||||||||||||||||||||||||