Патент на изобретение №2182523
|
||||||||||||||||||||||||||
(54) УСТРОЙСТВО ДЛЯ НАКОПЛЕНИЯ АЭРОЗОЛЕЙ ИЗ ГАЗОВ
(57) Реферат: Изобретение относится к аналитическому приборостроению и может быть использовано при анализе промышленных выбросов различных газов и воздуха. Устройство для накопления аэрозолей из газов содержит атомизатор, соединенный с системой прокачки газа, иглу, источник питания высокого напряжения, атомизатор выполнен в виде полого цилиндра с дозировочным отверстием в центральной части его боковой поверхности, а в систему прокачки газа включено дозировочное отверстие атомизатора, в котором установлена игла, снабженная средством взаимного перемещения относительно атомизатора. Устройство позволяет увеличить производительность пробоотбора, существенно увеличить скорость прокачки газа и снизить время накопления пробы. 4 ил. Изобретение относится к аналитическому приборостроению и может быть использовано при анализе промышленных выбросов различных газов и воздуха. Известно устройство, предназначенное для накопления аэрозолей из газа, в том числе из воздуха, с помощью их осаждения на фильтрах [1]. Устройство включает в себя насос, держатель для фильтра, сам фильтр, измеритель скорости потока воздуха. После прокачки газа через фильтр последний растворяется в концентрированной кислоте. Содержание накопленных элементов в этом растворе определяется с помощью одного из методов спектрального анализа (атомно-абсорбционного, ICP ES, ICP MS или др.). После вычитания фоновых содержаний определяемых элементов в кислоте и материале фильтра по известным объемам раствора и прокаченного газа рассчитывается содержание элементов в аэрозолях газа в мкг/м3 или нг/м3. Недостатками данного устройства являются относительно высокие содержания широкого круга элементов в материале фильтров и кислотах (даже хорошо очищенных). Это приводит к необходимости прокачки больших объемов газа (> 1 м3) через фильтр. Время пробоотбора при этом, как правило, велико и измеряется в часах. Кроме того, процедура разложения фильтра также занимает достаточно большое время – 2-3 часа. В результате производительность и оперативность этого устройства низкая. Известно устройство, предназначенное для накопления аэрозолей из газа с помощью их электростатического осаждения на вольфрамовом стержне, который после накопления аэрозолей помещается в электротермический атомизатор [2]. Устройство включает в себя газовый насос, источник высокого напряжения и тефлоновую трубку, через которую прокачивается газ. В стенку этой трубки вставлен острозаточенный вольфрамовый электрод, на который для возбуждения коронного разряда, необходимого для осаждения аэрозолей, подается положительный потенциал 10-30 кВ. Недостатком известного устройства является неполное осаждение аэрозолей на стержне, что требует применения калибровочной процедуры с использованием генератора аэрозолей. Однако эта процедура неадекватна, поскольку реальное распределение аэрозольных частиц по размерам в точке пробоотбора и их состав может весьма значительно отличаться от эталонного, что неизбежно приведет к возникновению большой и неконтролируемой ошибки. Кроме того, эффективность осаждения сильно уменьшается при увеличении скорости прокачки, поэтому для накопления необходимо использовать относительно малые скорости – порядка 1-1,5 л/мин, что с учетом невысокой полной эффективности осаждения требует достаточно большого времени накопления – 30-60 мин. Наиболее близким по функциональной сущности к заявляемому устройству является устройство, предназначенное для накопления аэрозолей из газа [3]. Устройство включает в себя атомизатор (графитовая печь) с поперечным отверстием, предназначенным для пропускания резонансного излучения, молибденовую иглу, введенную в атомизатор вдоль его главной оси, систему прокачки газа и источник высокого напряжения. Газ прокачивается через графитовую печь вдоль ее главной оси. Коронный разряд, возникающий на оси атомизатора на конце иглы, является источником электронов, которые прилипают к молекулам кислорода, а последние осаждаются на аэрозольных частицах, которые накапливаются на стенках атомизатора. К недостаткам известного устройства следует отнести: 1. Невозможность накопления средне- и труднолетучих элементов. Действительно, использование постоянно введенной в атомизатор молибденовой иглы, предназначенной для формирования коронного разряда, не позволит использовать температуру атомизации выше 2300oС, в противном случае игла разрушится. 2. Относительно низкие скорости прокачки газа – не более 1 л/мин, характерные для коаксиальной системы прокачки. При больших скоростях эффективность осаждения становится < 1, следовательно, при увеличении скорости прокачки необходимое время накопления аэрозолей не уменьшается, а несколько увеличивается. Низкая скорость прокачки и низкая чувствительность (в 7-10 ниже, чем для стандартной схемы атомно-абсорбционного анализа с электротермической атомизацией) требуют применения относительно больших времен накопления – 20-60 мин. Цель предлагаемого изобретения – увеличение производительности пробоотбора и, соответственно, уменьшение его времени. Поставленная цель достигает тем, что в устройстве для накопления аэрозолей из газа, содержащее атомизатор, соединенный с системой прокачки газа, иглу и источник высокого напряжения, атомизатор выполнен в виде полого цилиндра с дозировочным отверстием в центральной части его боковой поверхности, а в систему прокачки газа включено дозировочное отверстие атомизатора, в котором установлена игла, снабженная средством взаимного перемещения относительно атомизатора. Использование ортогональной системы прокачки газа через центральное дозировочное отверстие атомизатора с симметрично расположенными портами позволило существенно улучшить возможности накопления аэрозолей из газа. На фиг.1 представлена блок-схема предлагаемого устройства. На фиг.2 представлена зависимость аналитического сигнала Si от объемной скорости прокачки воздуха. На фиг.3 представлена зависимость аналитического сигнала Si от тока коронного разряда для свинца. На фиг. 4 представлена зависимость аналитического сигнала Si от объема прокачанного воздуха. Предлагаемое устройство по фиг.1 включает в себя иглу – 1, кожух атомизатора – 2, окна – 3, атомизатор – 4, подвижную платформу – 5, изолятор иглы – 6, порты для прокачки газа – 7, отверстие в крышке кожуха атомизатора – 8, дозировочное отверстие атомизатора – 9, газовый насос – 10, источник питания – 11. Атомизатор 4 выполнен в виде полого цилиндра с дозировочным отверстием 9 в центральной части его боковой поверхности. В качестве атомизатора может использоваться стандартная графитовая печь Массмана (электротермический атомизатор), а также тонкостенный металлический полый катод (газоразрядный атомизатор). Возможно использование и других типов атомизаторов. Система прокачки газа включает в себя газовый насос 10, соединенный с симметрично расположенными газовыми портами 7 и с дозировочным отверстием атомизатора 9, в котором установлена игла 1. Изолятор 6 служит для того, чтобы избежать возникновения искры между боковой поверхностью иглы 1 и стенкой дозировочного отверстия атомизатора 9. Средством взаимного перемещения иглы и атомизатора в данном случае является подвижная платформа 5, позволяющая перемещать иглу перпендикулярно оси атомизатора. Игла 1 должна быть изготовлена из тугоплавкого металла, например молибдена, в противном случае она быстро разрушится коронным разрядом в процессе работы. Окна 3 предназначены для использования предлагаемого устройства в атомно-абсорбционном анализаторе. Предлагаемое устройство работает следующим образом. Анализируемый газ за счет разрежения, создаваемого газовым насосом 10 в кожухе атомизатора 2, поступает через отверстие в крышке атомизатора 8 и откачивается через порты 7. При подаче напряжения на иглу 1 (в пределах 2.2-2.8 кВ), на конце ее возникает коронный разряд, ток которого регулируется изменением напряжения в диапазоне от 10 до 100 мкА. Коронный разряд является источником электронов, которые эффективно прилипают к молекулам кислорода, а последние так же эффективно осаждаются на аэрозольных частицах. Поскольку внутри атомизатора 4 существует высокая напряженность электрического поля, то аэрозольные частицы дрейфуют к стенке атомизатора и накапливаются там. Перед сменой атомизатора или проведением процедуры атомизации игла 1 с помощью подвижной платформы 5 выводится из атомизатора. Для иллюстрации приведем результаты, полученные с помощью предлагаемого устройства, установленного в серийном Зеемановском атомно-абсорбционном спектрометре МГА-915. Скорость прокачки измерялась с помощью электронных датчиков потока. Регулировка скорости потока в пределах 2-9 л/мин осуществлялась изменением напряжения питания газового насоса. Использование ортогональной системы прокачки газа через центральное дозировочное отверстие атомизатора (в данном случае печи Массмана) с симметрично расположенными портами и стандартной графитовой печью позволило существенно улучшить возможности накопления аэрозолей из газа. Как уже было упомянуто выше, электростатическое осаждение аэрозолей проводится при малых объемных и линейных скоростях потока газа из-за уменьшения эффективности осаждения с увеличением скорости. В нашем случае, поперечная конфигурация существенно отличается от традиционных коаксиальных систем и позволяет реализовать большие скорости прокачки при больших токах коронного разряда. При определении содержания свинца в атмосферном воздухе методом электростатического осаждения были исследованы зависимости аналитического сигнала от скорости прокачки и тока коронного разряда. На фиг.2 представлена зависимость аналитического сигнала Si от объемной скорости потока газа, в данном случае воздуха, где ![]() ![]() 1. уменьшением давления в графитовой печи по сравнению с атмосферным, что увеличивает скорость дрейфа заряженных аэрозолей на стенку печи; 2. торможением потока в зоне, расположенной ниже дозировочного отверстия, что увеличивает эффективность осаждения аэрозолей. 3. прижиманием потока к нижней части печи, что уменьшает время дрейфа заряженных аэрозолей на стенку. Полученная зависимость аналитического сигнала от тока коронного разряда приведена на фиг. 3. Как видно из чертежа, сигнал остается постоянным в пределах экспериментальной ошибки при изменении тока в широких пределах, что косвенно подтверждает данные [3] о 100% эффективности осаждения аэрозолей при токах коронного разряда > 10 мкА. На фиг. 4. представлена зависимость аналитического сигнала i от объема прокачанного газа для Рb, полученная при оптимальном режиме ( ![]() Формула изобретения
РИСУНКИ
|
||||||||||||||||||||||||||