Патент на изобретение №2182225

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2182225 (13) C2
(51) МПК 7
E21B49/08, G01N1/02
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 17.05.2011 – прекратил действие

(21), (22) Заявка: 2000120344/03, 28.07.2000

(24) Дата начала отсчета срока действия патента:

28.07.2000

(45) Опубликовано: 10.05.2002

(56) Список документов, цитированных в отчете о
поиске:
ХЭНКОК В.Х. и др. Бурение методом горячей воды скважины доступа и технология термического зонда, разработанные в университете Небраска-Линкольн, -Изучение озера Восток: научные задачи и технологии, Тезисы докладов Международного совещания, 24-26 марта 1998 г., ААНИИ, С.-Пб., 1998, с.90 SU 1458756 A, 21.07.1987. SU 1432372 Al, 23.10.1988. SU 1012074 А, 15.04.1983. SU 1488717 A1, 23.06.1989. SU 1126689 А, 30.11.1984. RU 1513981 A, 27.01.1996. RU 96108278 А, 27.07.1998. FR 2344826 А, 18.11.1977.

Адрес для переписки:

199026, Санкт-Петербург, В.О., 21 линия, 2, СПГГИ (ТУ), патентный отдел

(71) Заявитель(и):

Санкт-Петербургский государственный горный институт им. Г.В. Плеханова (Технический университет)

(72) Автор(ы):

Кудряшов Б.Б.,
Васильев Н.Н.,
Дмитриев А.Н.,
Барков Н.И.,
Веркулич С.Р.,
Саватюгин Л.М.

(73) Патентообладатель(и):

Санкт-Петербургский государственный горный институт им. Г.В. Плеханова (Технический университет)

(54) ТЕРМОБУРОВОЙ ПРОБООТБОРНИК


(57) Реферат:

Изобретение относится к буровой технике и может быть использовано при бурении скважин в ледовых покровах, для взятия проб, связанных с изучением природы подледниковых водоемов, их происхождения и прошлого состава вод, а также возможности существования в них каких-либо форм жизни. Техническим результатом является повышение надежности работы устройства и обеспечение экологической безопасности вскрытия подледниковых озер. Устройство содержит корпус с системой датчиков, тепловую коронку и кабельный замок, соединенный с пультом управления. Корпус снабжен двумя датчиками давления, расположенными внутри корпуса на разных уровнях, и пакером, размещенным на наружной поверхности корпуса между датчиками давления и соединенным через клапан с насосом. Тепловая коронка снабжена термоиглой с контактным датчиком-выключателем на ее верхнем конце и плавкой насадкой на нижнем, с которой соединен нижний датчик давления. Корпус коронки выполнен Т-образной формы с конусной нижней полочкой. Благодаря этому повышается надежность работы устройства, исключается загрязнение подледниковых водоемов. 2 ил.


Изобретение относится к буровой технике и может быть использовано для взятия проб льда и воды при бурении скважин в ледниковых покровах, а также для асептического вскрытия подледниковых водоемов с последующей надежной изоляцией от вышерасположенного ствола скважины с заливочной жидкостью.

Известно устройство по авторскому свидетельству 1458756, G 01 N 1/02, публ. БИ 6, 1989, “Пробоотборник” для получения проб изо льда для последующих микробиологических или других видов исследований, связанных с изучением различных горизонтов ледниковых покровов и требующих стерильности процесса отбора проб.

Пробоотборник состоит из узлов: отбора пробы, размыва, нагревателей, стерилизации, блока управления. Недостатком этого устройства является сложность конструкции и опасность загрязнения подледниковых водоемов.

Известно также устройство для проникновения через ледяную оболочку в водную среду, принятое за прототип – криобот: В.X. Хэнкок, К.С. Куивинен, Дж. Р. Келти, Б. Л. Хансен. “Бурение методом горячей воды скважины доступа и технология термического зонда, разработанные в университете Небраска – Линкольн. ” – Изучение озера Восток: научные задачи и технологии. Тезисы докладов Международного совещания (24-26 марта 1998 года, ААНИИ, Санкт-Петербург, Россия), 1998, с. 90.

Криобот, имеющий длину около 2 м при диаметре в 100-200 мм, связан со станцией, расположенной на поверхности, сверхтонким кабелем, выполняющим несущую и коммуникационную функции. Прохождение криобота вниз через ледяную толщу обеспечивается им самим в результате нагревания и плавления льда и благодаря собственному весу. При движении кабель будет разматываться с катушки, помещенной внутри криобота, и оставаться вмороженным в лед позади устройства. Внутри корпуса криобота находится гидробот, в котором размещается комплекс измерительной и аналитической техники, датчики, которые по ходу движения определяют основные характеристики ледовой толщи. В момент контакта криобота с водным слоем гидробот отделяется и начинает самостоятельные исследования водной толщи, передавая информацию на криобот по кабелю.

Для доставки криобота на максимально возможную глубину, чтобы сократить расстояние до поверхности озера, требуется бурение новой скважины. В противном случае в криоботе необходимо поместить катушку со сверхтонким многожильным кабелем. Мощность антарктического ледника в районе озера Восток 4000 м, однако возможность проникновения в озеро с помощью криобота даже с глубины 3000 м представляется крайне сомнительной не только из-за проблемы размещения в криоботе кабеля необходимой длины, но и из-за трудностей в обеспечении вертикальной направленности движения криобота, стабильности и эффективности процесса плавления льда под его рабочим торцом.

Недостатком устройства является сложная и недостаточно надежная конструкция и опасность загрязнения подледникового озера, так как по завершении исследований предполагается оставление гидробота в озере.

Задачей изобретения является устранение указанных недостатков, то есть повышение надежности работы устройства, и обеспечение экологической безопасности вскрытия подледниковых озер.

Задача решается тем, что термобуровой пробоотборник, содержащий корпус с системой датчиков, тепловую коронку и кабельный замок, соединенный с пультом управления, характеризуется тем, что корпус снабжен двумя датчиками давления, расположенными внутри корпуса на разных уровнях, и пакером, размещенным на наружной поверхности корпуса между датчиками давления и соединенным через клапан с насосом, а тепловая коронка снабжена термоиглой с контактным датчиком-выключателем на ее верхнем конце и плавящей насадкой на нижнем, с которой соединен нижний датчик давления, причем корпус коронки выполнен Т-образной формы с конусной нижней полочкой.

Благодаря этому повышается качество отбираемой пробы и исключается загрязнение подледниковых водоемов.

Термобуровой пробоотборник поясняется чертежами, где на фиг.1 – продольный разрез термобурового пробоотборника; на фиг.2 – схема проникновения в подледниковое озеро термобуровым пробоотборником.

Термобуровой пробоотборник содержит тепловую коронку 1 с термоиглой 2, цилиндрический корпус 3 и кабельный замок 4.

Тепловая коронка включает термоиглу с контактным датчиком 5, состоящим из штока 6, пружины 7 и конечного выключателя 8. На нижнем конце термоигла имеет плавящую насадку 9.

В корпусе пробоотборника размещен пакер 10, насос 11, клапан 12, датчики давления 13, 14 и нагрузки 15, электронный блок 16 с электроотсеком 17. Корпус представляет собой толстостенную трубу, на его наружной поверхности между датчиками давления 13 и 14 находится пакер 10, приводимый в действие насосом 11 через клапан 12. В верхней части корпуса закреплен электроотсек 17 с датчиком нагрузки на забой 15 и электронный блок 16.

С наземным пультом управления пробоотборник соединен грузонесущим кабелем 18, который закреплен в кабельном замке 4. Рабочие и контрольные жилы 19 грузонесущего кабеля подключены к электронному блоку управления 16.

Система датчиков и электронный блок обеспечивают необходимый режим и технологию отбора пробы, постоянный контроль за ходом процесса пробоотбора в скважине и возможность оперативного вмешательства оператора с наземного пульта в его ход.

Устройство работает следующим образом. После проходки скважины в ледовой толще ледника для бурения оставшейся части до контакта с поверхностью подледникового озера на забой скважины опускается термобуровой пробоотборник на грузонесущем кабеле 18. При бурении нижняя поверхность термоиглы 2 длиной, например, 2 метра и конусная поверхность тепловой коронки 1 находятся в постоянном контакте с ледяным забоем. Термоигла 2 формирует под термоотборником пилот-скважину, диаметр которой в 3-4 раза меньше, чем диаметр основной скважины. Когда термоигла 2 дойдет до поверхности озера, опора под ней исчезнет, на что среагирует контактный датчик 5. Шток 6 опустится вниз под действием собственного веса и усилия пружины 7, воздействуя на конечный выключатель 8. Сигнал от конечного выключателя 8 поступит через электронный блок 16 на пульт управления на поверхности и даст команду на вкючение пакера 10 для изоляции призабойной зоны от остальной части скважины с заливочной жидкостью, на выключение питания коронки и на приостановление движения пробоотборника. При этом произойдет немедленная остановка процесса бурения. В тот же момент в соответствии с показаниями датчиков (контактного 5, датчиков нагрузки на забой 15 и датчиков давления 13 и 14 под торцом термоиглы 2 и над пакером 10) будет оценена разность давления, создаваемого столбом заливочной жидкости в скважине и воды в озере.

В случае если давление заливочной жидкости меньше или равно давлению воды в озере (РжР0), в момент контакта с поверхностью озера начнется движение воды вверх, вдоль поверхности термоиглы 2. Дальнейший подъем воды в ствол скважины на заданную высоту происходит при подъеме пробоотборника.

Если давление жидкости в скважине будет выше давления в озере (Рж0), датчик давления 13 под торцом термоиглы 2 покажет давление ниже, чем датчик давления 14 над пакером 10. При этом под действием разности давлений пробоотборник будет автоматически прижат к забою. Нижняя конусная поверхность тепловой коронки 1 будет придавлена к уступу забоя, и предлагаемое устройство сыграет роль клапана, изолирующего озеро от скважины. Пакер 10 в этом случае будет играть вспомогательную роль, повышая надежность изоляции озера от вышерасположенного ствола скважины с заливочной жидкостью. По показаниям датчиков давлений 13 и 14 будет определяться величина избытка давления столба заливочной жидкости. Для приведения ситуации к первому варианту (РжР0), из скважины будет извлечена необходимая часть жидкости, что будет контролироваться показанием датчика давления 14 над пакером 10. После создания условий превышения давления в озере над давлением в скважине будет начат подъем пробоотборника с одновременным подъемом озерной воды в скважину на высоту, определяемую величиной недокомпенсации горного давления, после чего работы в скважине прекращаются на период замерзания внедрившейся в скважину озерной воды. Затем производится отбор части льда, образовавшегося из озерной воды, электромеханическим буровым снарядом. Остаток льда не разбуривается, что обеспечивает полную изоляцию ствола скважины от поверхности озера и устраняет опасность его загрязнения, чему способствует также очищение пробоотборника и кабеля талой водой в процессе протаивания льда пробоотборником и образования буферного слоя, столб которого располагается ниже заливочной жидкости.

Формула изобретения


Термобуровой пробоотборник, содержащий корпус с системой датчиков, тепловую коронку и кабельный замок, соединенный с пультом управления, отличающийся тем, что корпус снабжен двумя датчиками давления, расположенными внутри корпуса на разных уровнях, и пакером, размещенным на наружной поверхности корпуса между датчиками давления и соединенным через клапан с насосом, а тепловая коронка снабжена термоиглой с контактным датчиком-выключателем на ее верхнем конце и плавящей насадкой на нижнем, с которой соединен нижний датчик давления, причем корпус коронки выполнен Т-образной формы с конусной нижней полочкой.

РИСУНКИ

Рисунок 1, Рисунок 2


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 29.07.2002

Номер и год публикации бюллетеня: 4-2004

Извещение опубликовано: 10.02.2004


Categories: BD_2182000-2182999