Патент на изобретение №2182162
|
||||||||||||||||||||||||||
(54) СПОСОБ ПОЛУЧЕНИЯ ПИГМЕНТА ДЛЯ ЛЮМИНОФОРНЫХ ПОКРЫТИЙ НА ОСНОВЕ СУЛЬФИДА ЦИНКА
(57) Реферат: Изобретение предназначено для электронной техники и может быть использовано при получении электронно-лучевых трубок для кинескопов телевизионной и компьютерной техники. Люминофор ZuS:Ag,Cu измельчают и агломерируют. Отбирают фракцию с размером частиц, дающим максимальное свечение. Отбор ведут так, чтобы средний размер частиц находился в интервале 8 мкм 15%. При отборе по методу Стокса отобранный порошок помещают в сушильный шкаф и выпаривают воду при 100oС. Интенсивность начального свечения увеличивается на 8%, радиационная стойкость – на 5% после облучения люминофора потоком электронов Е=24 кэВ. 1 табл., 3 ил.
Предлагаемое изобретение относится к способам получения радиационностойких люминофорных покрытий, а именно к разработке технологии получения пигмента на основе сульфида цинка, применяемого в качестве одного из компонентов для создания цветовой гаммы электронно-лучевых трубок кинескопов телевизионной и компьютерной техники. Общеизвестно, что исходные оптические свойства порошков пигментов зависят не только от их фазового, химического, но и от гранулометрического состава: размеров и формы зерен, гранул и агломератов. Taк, интенсивность свечения люминофора может значительно меняться в зависимости от толщины, покрытия и размеров гранул [Иванов А.П., Предко К.Г. Оптика люминесцентного экрана. Минск.: Наука и техника, 1984, 271 с.]. e(r). В общем случае они не совпадают. Задачей изобретения является повышение радиационной стойкости пигмента на основе сульфида цинка. Эта задача решается за счет того, что в способе получения пигмента для люминофорных покрытий на основе сульфида цинка, заключающемся в измельчении люминофора и отборе фракции с размером частиц, дающих максимальное свечение, согласно заявляемому изобретению измельченный агломерированный порошок выбирают с размерами частиц более 8 мкм, r менее 13 мкм так, чтобы массовая доля остатков фракций M8 (r меньше 8 мкм) и М13 (r больше 13 мкм) M8+M13 15%Далее необходимо пояснить следующее. Из теории Гуревича-Кубелки-Мунка известна формула для коэффициента отражения R толстого cлоя покрытия [Гуревич М.М., Ицко Э.Ф., Середенко М.М. Оптические свойства лакокрасочных покрытий. Л.: Химия, 1984, 120 с.1, связывающая показатели поглощения (k) и рассеяния (S) ![]() из которой после дифференцирования следует формула изменения R![]() Показатель поглощения k прямо пропорционален количеству биографических дефектов и количеству наведенных в процессе облучения центров поглощения, определяемых величиной удельной поверхности порошка (Sуд), которая связана со средним размером частиц [Евстратова К.И., Купина Н.А., Малахова Е.Е. Физическая и коллоидная химия. М.: Высшая школа, 1990, 487 с.].
![]() где – константа, зависящая от формы частиц; – плотность порошка.
Из формул (2) и (3) следует, что увеличение размеров частиц порошка приводит к уменьшению R и повышению радиационной стойкости.
Если порошок представляет собой агломераты, состоящие из сростков кристалликов, то с увеличением размера частиц растет число стыков зерен и пор в пересчете на одну частицу и соответственно величина светорассеяния S, что согласно (2) уменьшает коэффициент рассеяния. Но с другой стороны, существует и межкристаллическая пористость, образуемая при формировании слоя покрытия, которая тоже является причиной рассеяния света, и с уменьшением размера частиц количество таких макропор увеличивается. Таким образом, с увеличением размера частиц растет рассеяние света за счет внутрикристаллитной микропористости, а с уменьшением размера – за счет межкристаллитной макропористости.
Между двумя возрастающими зависимостями должен быть минимум, который через рассеяние света сказывается на оптических свойствах пигмента, в частности на коэффициенте диффузного отражения.
С другой стороны известно, что интенсивность люминесценции (I) связана прямо пропорциональной зависимостью с количеством локальных центров поглощения [Фок М.В. Введение в кинетику кристаллофосфоров М.: Наука, 1964, 283 с.] , так что увеличение количества дефектов и ловушек понижает интенсивность люминесценции. Следовательно, большей радиационной стойкостью будут обладать люминофоры с меньшим количеством биографических дефектов, количество которых можно оценивать по начальным оптическим свойствам.
В качестве пигмента выбран порошок синего люминофора ZnS:Ag,Cl, имеющий размеры агломератов в диапазоне мкм.
Для косвенной оценки начального количества биографических дефектов выбрана величина интегрального коэффициента поглощения (аs0), определяемая как разностьas = 1- s, (4)где s – интегральный коэффициент диффузного отражения солнечного излучения, определяемый по спектрам диффузного отражения ![]() . [Косицын Л.Г., Михайлов М.М. Кузнецов Н.Я., Дворецкий М.И. Установка для исследования спектров диффузного отражения и люминесценции твердых тел в вакууме. ПТЭ, 1985, 4, c.l 76-180.]Спектры ![]() регистрировали на установке “Спектр-1”, время облучения УФ-светом составляло 10, 20 ч.
Измерения люминесценции люминофора ZnS: Ag, Сl производились на длине волны = 450 нм (по величине максимума пика излучения).
Экспериментальные данные зависимости as0 от размера агломератов для порошка люминофора ZnS: Ag, Cl (фиг.1) показывают, что существует область размеров 8 1017 см-2 показывают, что в интервале размеров 8 1017 см-2.
На фиг.1 представлена зависимость интегрального коэффициента поглощения (аs) от размера частот пигмента ZnS:Ag,Cl.
На фиг.2 представлена зависимость радиационной стойкости – относительной интенсивности люминесценции (I/I0) от размера частиц пигмента ZnS:Ag,Cl.
На фиг.3 представлены функции распределения частиц по размерам:1 – исходного порошка (прототип) ZnS:Ag,Cl; 2 – порошка с выделенными крупной и мелкой фракциями. В таблице представлены данные зависимости начальной интенсивности свечения порошка люминофора (I0) и деградации (I/I0) в зависимости от остатков фракций. Практический пример. Берут 100 г сухого алгомерированного порошка ZnS:Ag,Cl со средним размером частиц 10-12 мкм, опускают в трехлитровую емкость с дистиллированной водой и по методу Стокса [Фигуровский Н.А. Седиментационный анализ, М.-Л.: Изд-во АН СССР, 332 с.] выделяют фракции M8 (r<8) мкм и M13 (r>13 мкм) и подсчитывают отношение ![]() ![]() Если П8+П13>15%, то производят вторичное извлечение фракций. Если П8+П13 15%, то производят процесс декантации и отлучивают мелкую фракцию r<8 мкм. После окончания процессов выделения фракций порошок пигмента помещают в сушильный шкаф и при 100oС выпаривают воду.
Для промышленных нужд можно использовать классификатор порошков [Никульчиков В. К. , Росляк А.Т., Дятиков П.М., Ананьев А.А. Устройство для измельчения и классификации порошков. Пат. 2005564, Россия, опубл. БИ 1994, 4], позволяющий отбирать фракции с размерами r<8 мкм и r>13 мкм.
Формула изобретения
РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 14.03.2002
Номер и год публикации бюллетеня: 10-2003
Извещение опубликовано: 10.04.2003
|
||||||||||||||||||||||||||

15%. При отборе по методу Стокса отобранный порошок помещают в сушильный шкаф и выпаривают воду при 100oС. Интенсивность начального свечения увеличивается на 8%, радиационная стойкость – на 5% после облучения люминофора потоком электронов Е=24 кэВ. 1 табл., 3 ил.

R
[Евстратова К.И., Купина Н.А., Малахова Е.Е. Физическая и коллоидная химия. М.: Высшая школа, 1990, 487 с.].

– константа, зависящая от формы частиц;
– плотность порошка.
Из формул (2) и (3) следует, что увеличение размеров частиц порошка приводит к уменьшению
мкм.
Для косвенной оценки начального количества биографических дефектов выбрана величина интегрального коэффициента поглощения (аs0), определяемая как разность
. [Косицын Л.Г., Михайлов М.М. Кузнецов Н.Я., Дворецкий М.И. Установка для исследования спектров диффузного отражения и люминесценции твердых тел в вакууме. ПТЭ, 1985, 4, c.l 76-180.]
1017 см-2 показывают, что в интервале размеров 8
