Патент на изобретение №2181469

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2181469 (13) C1
(51) МПК 7
F28C1/00
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 17.05.2011 – действует

(21), (22) Заявка: 2001113967/06, 21.05.2001

(24) Дата начала отсчета срока действия патента:

21.05.2001

(45) Опубликовано: 20.04.2002

(56) Список документов, цитированных в отчете о
поиске:
Пособие по проектированию градирен, СНиП 2.04.02-84, М.: ЦИТП Госстроя СССР, 1989, с.106-114. SU 648821 A, 28.02.1979. SU 1809278 A1, 15.04.1993. GB 1604389 A, 09.12.1981. СН 522866 А, 30.06.1972.

Адрес для переписки:

195220, Санкт-Петербург, ул. Гжатская, 21, ОАО “ВНИИГ им. Б.Е. Веденеева”, патентное подразделение

(71) Заявитель(и):

Открытое акционерное общество “Всероссийский научно-исследовательский институт гидротехники им. Б.Е. Веденеева”

(72) Автор(ы):

Гончаров А.В.

(73) Патентообладатель(и):

Открытое акционерное общество “Всероссийский научно-исследовательский институт гидротехники им. Б.Е. Веденеева”

(54) СПОСОБ ОПРЕДЕЛЕНИЯ ОХЛАЖДАЮЩЕЙ СПОСОБНОСТИ ДЕЙСТВУЮЩЕЙ БАШЕННОЙ ГРАДИРНИ


(57) Реферат:

Изобретение может быть использовано в системах оборотного водоснабжения тепловых электростанций и промышленных предприятий, где применяются башенные градирни. Способ определения охлаждающей способности действующей башенной градирни заключается в сравнении измеренных в натурных условиях гидроаэротермических параметров воды и воздуха с теоретическим пределом охлаждения. В качестве коэффициента эффективности градирни принимают отношение температур нормативного недоохлаждения к фактическому: эф= (t)/(t), где эф -коэффициент эффективности градирни, t – температура охлажденной воды, полученная по номограмме, – теоретический предел охлаждения для атмосферных охладителей, t – фактическая температура охлажденной воды, измеренная в натурных условиях. Связь коэффициента эффективности градирни с тепловой нагрузкой охладителя определяют по формуле U = qt, где U – тепловая нагрузка, q – плотность орошения охладителя, t – температурный перепад нагретой и охлажденной воды. Изобретение позволяет диагностировать градирни в широком диапазоне тепловых нагрузок. 1 ил.


Изобретение относится к области теплоэнергетики и может быть использовано в системах оборотного водоснабжения тепловых электростанций и промышленных предприятий, где применяются башенные градирни.

Для всех типов башенных градирен имеются номограммы температур охлажденной воды, уровень охлаждения которых лежит в основе технико-экономических расчетов, соответствующей оптимизации системы техводоснабжения ТЭС, оптимизации системы турбина-конденсатор-градирня, результатом чего является выбор основных геометрических размеров вытяжной башни, воздуховходных окон и т.п.

Известен способ определения охлаждающей способности градирен путем сравнения фактических температур воды, выходящей из градирни, с температурой смоченного термометра или теоретическим пределом охлаждения циркуляционной воды в атмосферных охладителях (см. Л.Д. Берман “Испарительное охлаждение циркуляционной воды”. М.-Л.: Госэнергоиздат, 1957, с.320).

Недостатком этого способа является то, что вода, поступающая в градирню, изменяет свою температуру на (t) и температура воздуха по мере его прохождения подоросительного пространства не остается постоянной. Отсюда изменяется и в некоторых, хотя и небольших, но трудноопределяемых пределах. Это обстоятельство не позволяет говорить о строгом соответствии температур охлажденной воды в градирнях, полученных на реальных охладителях, теоретическому пределу охлаждения , отнесенному, как следует из практики, к состоянию воздуха на входе в охладитель. Вместе с тем при сравнительных оценках работы атмосферных охладителей использование теоретического предела охлаждения вполне оправдано.

Наиболее близким к предлагаемому является способ определения охлаждающей способности башенной градирни, включающий сравнение фактических параметров воды и воздуха, полученных при натурных исследованиях с нормативной номограммой температур охлажденной воды (t-t), где t – температура охлажденной воды, измеренная в натурных условиях, t – температура охлажденной воды, полученная по номограмме (см. Пособие по проектированию градирен, СНиП 2.04.02-84, М.: ЦИТП Госстроя СССР, 1989, с.106-114).

Недостатками прототипа являются использование эмпирических зависимостей, полученных на лабораторных установках, которые не всегда в полной мере соответствуют натурным условиям работы охладителя. А также этот способ не позволяет характеризовать работу охладителя в широком диапазоне изменений гидроаэротермических параметров.

Техническим результатом изобретения является диагностирование градирен в широком диапазоне тепловых нагрузок.

Технический результат достигается тем, что в способе определения охлаждающей способности действующей башенной градирни сравнивают измеренные в натурных условиях гидроаэротермические параметры воды и воздуха с теоретическим пределом охлаждения. В качестве коэффициента эффективности градирни принимают отношение температур нормативного недоохлаждения к фактическому:
эф = (t)/(t),
где эф – коэффициент эффективности градирни, t – температура охлажденной воды, полученная по номограмме, – теоретический предел охлаждения для атмосферных охладителей, t – фактическая температура охлажденной воды, измеренная в натурных условиях. Связь коэффициента эффективности градирни с тепловой нагрузкой определяют по формуле:
U = qt,
где U – тепловая нагрузка, q – плотность орошения охладителя, t – температурный перепад нагретой и охлажденной воды.

Способ осуществляется следующим образом. В натурных условиях на действующих башенных градирнях измеряют температуры нагретой и охлажденной воды, расход циркуляционной воды, температуру и влажность воздуха, скорость ветра. По этим данным, согласно номограмме температур охлажденной воды, определяют температуру охлажденной воды, которую сравнивают с фактически измеренной температурой, согласно зависимости. Уровень охлаждения воды в градирнях зависит от удельной тепловой нагрузки, величина которой определяется работой конденсатора турбины. Поэтому должна быть четкая функциональная зависимость между величинами t, t, , t, q, причем t зависит только от количества тепла, передаваемого воде в конденсаторе, т.е. имеется зависимость вида: (t)/(t) = f(tq).
Левая часть этой зависимости показывает отношение температуры нормативного недоохлаждения (по номограмме температур охлажденной воды для каждого типа градирен) к фактическому, определяемому по данным натурных условий. Правая часть – тепловая нагрузка охладителя, зависящая от количества тепла, передаваемого конденсатором циркуляционной воде.

Сравнение данных натурных измерений с тепловой нагрузкой позволяет оценить охлаждающую способность градирни во всем диапазоне гидравлических и тепловых нагрузок этого охладителя.

Пример. Определение охлаждающей способности башенной брызгальной градирни Петрозаводской ТЭЦ.

На чертеже изображен график оценки охлаждающей способности башенной брызгальной градирни, поясняющий способ.

Из графика зависимости (t)/(t) = f(U) следует, что при низких значениях тепловой нагрузки башенная брызгальная градирня охлаждает циркуляционную воду хуже пленочной градирни и при минимальных нагрузках это ухудшение охлаждающей способности доходит до 30% (при U=20 Мкал/(м2ч)).

При высоких нагрузках порядка 100 Мкал/(м2ч) башенная брызгальная градирня работает практически идентично градирням пленочного типа. Низкие тепловые нагрузки чаще всего связаны с уменьшением циркуляционного расхода воды.

Предложенный способ определения охлаждающей способности действующих башенных градирен, в соответствии с графиком, позволяет эксплуатационному персоналу электростанций наглядно представлять режимы удовлетворительной работы охладителя и диапазоны тепловых нагрузок с заниженными уровнями охлаждения циркуляционной воды.

Формула изобретения


Способ определения охлаждающей способности действующей башенной градирни, включающий сравнение измеренных в натурных условиях гидроаэротермических параметров воды и воздуха с теоретическим пределом охлаждения, отличающийся тем, что в качестве коэффициента эффективности градирни принимают отношение температур нормативного недоохлаждения к фактическому:
эф= (t)/(t),
где эф – коэффициент эффективности градирни;
t – температура охлажденной воды, полученная по номограмме;
– теоретический предел охлаждения для атмосферных охладителей;
t – фактическая температура охлажденной воды, измеренная в натурных условиях,
а связь коэффициента эффективности градирни с тепловой нагрузкой охладителя определяют по формуле
U = qt,
где U – тепловая нагрузка;
q – плотность орошения охладителя;
t – температурный перепад нагретой и охлажденной воды.

РИСУНКИ

Рисунок 1

Categories: BD_2181000-2181999