Патент на изобретение №2179981
|
||||||||||||||||||||||||||
(54) СОЛИ ПЕРЕХОДНОГО МЕТАЛЛА С ПОЛИПЕПТИДОМ И СПОСОБ ПОВЫШЕНИЯ АКТИВНОСТИ ПОЛИПЕПТИДА ПРОТИВ ВИЧ
(57) Реферат: Изобретение относится к соединениям соли полипептида, представленного в формуле (I), где А1, А2, А3, А4, Х, Y и Z имеют значения, представленные в описании, и переходного металла, которые обладают высокой антивирусной активностью против вируса иммунодефицита человека. Описаны также способ повышения активности против ВИЧ соединения полипептида формулы (I), заключающийся в том, что указанный полипептид переводят в соль с переходным металлом, а также фармацевтическая композиция, включающая в себя соединение соли полипетида (I) с переходным металлом, обладающая антивирусной активностью. 3 c. и 4 з.п. ф-лы, 2 табл. ![]() Изобретение касается соли переходного металла с полипептидом, который проявляет сильное сродство к липополисахаридам, в частности к эндотоксинам, и кроме того, изобретение касается способа повышения антивирусной активности (например, активности против ВИЧ) полипептида, посредством которого указанная антивирусная активность проявляется стабильно и сильно, путем преобразования указанного полипептида в соль переходного металла, а также касается фармацевтической композиции или лекарственной композиции для ингибирования ВИЧ-активности, которая включает в себя в качестве активного ингредиента указанную соль переходного металла с полипептидом (которая здесь иногда называется солью полипептида и переходного металла). Как показано в упоминаемых ниже публикациях, из мечехвостов выделили два семейства антимикробных полипептидов, которые проявляют сродство к эндотоксинам. См. , например, Shigenaga et al., 1990, J.Biol. Chem., 265:21350-21354; Kawano et al., 1990, J.Biol. Chem., 265:15365-15367; Muta et al., 1990, J. Biochem., 108:261-266; выложенная заявка на патент Японии 167230/1990; выложенная заявка на патент Японии 1152987/1990; выложенная заявка на патент Японии 53799/1990; патент США номер 5068314 (опубликованная заявка с проведенным патентным поиском 500194/1990); Miyata et al., 1989, J.Biochem., 106: 663-668; Akaji et al., 1989; Chem. Pharm. Bull. 37:2661:2664; Tokunaga and Iwanaga, 1989, Taisha (Metabolism), 26:429-439); Shieh et al., 1989, FEBS Lett., 252:121-124; Nakamura et al., 1988, J. Biol. Chem., 263:16709-16713. Одно семейство – семейство тахиплесинов – выделили из японского меченосца Tachypleus. Идентифицировали три тахиплесина I, II и III. Другое семейство – семейство полифемузинов – выделили из американского меченосца Limulus polyphemus. Идентифицировали два полифемузина I и II. Было установлено, что оба указанные семейства тахиплесины и полифемузины ингибируют рост как грамположительных, так и грамотрицательных бактерий при низких концентрациях, а также грибков, таких как Candida albicans, и образуют комплексы с бактериальным липополисахаридом (Shigenaga et al., 1990, J. Biol. Chem., 265:21350-21354; Muta et al., 1990, J. Biochem., 108:261-266). Было также установлено, что полипептид семейства тахиплесинов оказывает ингибирующее действие на вирусы, такие как вирус гриппа, вирус везикулярного стоматита (Murakami et al., 1991, Chemotherapy, 37, 327-334) или вирус иммунодефицита человека (ВИЧ) (Morimoto et al., 1991, Chemotherapy, 37, 206-211). С другой стороны, с точки зрения выживания высокоразвитых человеческих существ чрезвычайно необходима разработка лекарств, которые могут оказать профилактическое или терапевтическое действие в отношении синдрома приобретенного иммунодефицита человека (СПИДа), вызываемого заражением вирусом иммунодефицита человека (ВИЧ). Авторы настоящего изобретения в результате исследований по корреляции между структурным преобразованием полипептида, обладающего сродством к эндотоксину, и его активностью против ВИЧ открыли серию неизвестных ранее полипептидов, которые принципиально отличаются от обычной структуры полипептида меченосцев и проявляют высокую степень активности против вируса иммунодефицита человека (ВИЧ), и эти результаты были опубликованы в нижеуказанных публикациях (Nakashima et al. , 1992, Antimicrob. Agents Chemother., 36: 1249-1255; Masuda et al., 1992, Biochem. Biophys. Res. Commun., 189:845-850; Tamamura et al. , 1993, Chem. Pharm. Bull., 41:978-980; Tamamura et al., 1993. Biochem. Biophys. Acta, 1163:209-216; Masuda et al., 1992, J. Pharmacobio. Dyn. , 15: s-90; патент США 5571892 (международная публикация WO 92/04374); патент США 5449752 (выложенная заявка на патент Японии 163298/1993)). В результате изучения требований к структуре, связанных с экспрессированием активности полипептида против ВИЧ, на основе базовой структуры полипептида, полученного из меченосцев, который состоит из 16-18 аминокислотных остатков, авторы настоящего изобретения разработали и представили в качестве изобретения неизвестную ранее концепцию, в которой фокусируется внимание на минимально необходимой структуре (Международная заявка WO 95/10534). В соответствии с вышеупомянутым изобретением структурная концепция взятого в качестве примера соединения – полипептида, происходящего из полипептида меченосцев как стандартного материала и проявляющего антивирусную активность, может быть выражена с помощью нижеприведенной формулы [I] ![]() (в которой A1 независимо представляет собой остаток основной аминокислоты, выбранной из Lys (лизина), Аrg (аргинина) и Оrn (орнитина); остаток пептида, имеющий, по меньшей мере, два из указанных остатков основных аминокислот; или остаток N- ![]() ![]() ![]() A2 независимо представляет собой остаток аминокислоты, выбранной из Phe (фенилаланина), Тrр (триптофана) и Туr (тирозина); А3 независимо представляет собой остаток основной аминокислоты, выбранной из Lys, Arg и Orn; А4 представляет собой -ОН (происходящий из карбоксильной группы) или -NH2 (происходящий из группы кислого амида); Х представляет собой пептидный остаток из двух аминокислотных остатков, где в следующем положении одного остатка аминокислоты, выбранной из А1а (аланина), Val (валина), Leu (лейцина), Ilе (изолейцина), Sеr (серина), Met (метионина) и Суs (цистеина), одна из аминокислот из A2 присоединена через пептидную связь; Y представляет собой пептидный остаток из двух аминокислотных остатков, который состоит из комбинации остатка Gly (глицина) и одного остатка аминокислоты, выбранной из А3, или пептидный остаток из двух аминокислотных остатков, который состоит из комбинации остатка Pro (пролина) и остатка одной аминокислоты, выбранной из D-Arg, D-Lys и С-Оrn; Z представляет собой пептидный остаток из двух аминокислотных остатков, где в следующем положении одного остатка аминокислоты, выбранной из Ala, Val, Leu, Ile, Ser, Met и A2, Cys присоединен через пептидную связь; и остаток X-Y-Z, соединенный пептидными связями, присоединен к каждому аминокислотному остатку в 6-м и 10-м положениях через пептидные связи, или из-за конкурентной делеции Х и Z, остаток Y может быть присоединен напрямую к каждому аминокислотному остатку в 6-м и 10-м положениях через пептидные связи, где атом водорода находящейся в боковой цепи ![]() ![]() (1) соединения, являющегося солью переходного металла с полипептидом, показанного в следующей формуле: ![]() (в которой A1 независимо представляет собой остаток основной аминокислоты, выбранный из Lys, Arg и Orn; остаток пептида, имеющий, по меньшей мере, два из указанных остатков основных аминокислот; или остаток N- ![]() ![]() ![]() A2 независимо представляет собой остаток аминокислоты, выбранной из Phe, Trp и Туr; А3 независимо представляет собой остаток основной аминокислоты, выбранной из Arg, Lys и Orn; А4 представляет собой -ОН (происходящий из карбоксильной группы) или -NH2 (происходящий из группы кислого амида); Х представляет собой пептидный остаток двух аминокислотных остатков, где в следующем положении одного остатка аминокислоты, выбранной из Ala, Val, Leu, Ile, Ser, Met и Cys, одна из аминокислот из А2 присоединена через пептидную связь; Y представляет собой пептидный остаток двух аминокислотных остатков, который состоит из комбинации остатка Gly и остатка одной аминокислоты, выбранной из А3, или пептидный остаток двух аминокислотных остатков, который состоит из комбинации остатка Pro и остатка одной аминокислоты, выбранной из D-Arg, D-Lys и D-Orn; Z представляет собой пептидный остаток двух аминокислотных остатков, где в следующем положении одного остатка аминокислоты, выбранной из Ala, Val, Leu, Ile, Ser, Met и А2, Cys присоединен через пептидную связь; и остаток X-Y-Z, соединенный пептидными связями, присоединен к каждому аминокислотному остатку в 6-м и 10-м положениях пептидными связями, или в результате конкурентной делеции Х и Z, остаток Y может быть присоединен напрямую к каждому аминокислотному остатку в 6-м и 10-м положениях пептидными связями, где атом водорода находящейся в боковой цепи ![]() ![]() (2) соединения соли переходного металла с полипептидом или кислот соли присоединения указанной соли переходного металла с полипептидом по п.(1), в котором соль переходного металла представляет собой комплексную соль; (3) соединения соли переходного металла с полипептидом или кислот соли присоединения указанной соли переходного металла с полипептидом по пп. (1) или (2), в котором переходный металл выбирают из группы, состоящей из группы железа в составе Fe, Co и Ni, группы меди в составе Сu, Аg и Аu, группы цинка в составе Zn, Cd и Нg, группы марганца в составе Мn, Тc и Re; (4) способа повышения и экспрессирования высокой и стабильной активности против ВИЧ соединения полипептида, показанного в следующей формуле: ![]() (в которой A1 независимо представляет собой остаток основной аминокислоты, выбранной из Lys, Arg и Orn; остаток пептида, имеющий, по меньшей мере, два из указанных остатков основных аминокислот; или остаток N- ![]() ![]() ![]() А2 независимо представляет собой остаток аминокислоты, выбранной из Phe, Trp и Туr; А3 независимо представляет собой остаток основной аминокислоты, выбранной из Arg, Lys и Оrn; А4 представляет собой -ОН (происходящий из карбоксильной группы) или -NH2 (происходящий из группы кислого амида); Х представляет собой пептидный остаток двух аминокислотных остатков, где в следующей позиции одного остатка аминокислоты, выбранной из Ala, Val, Leu, Ile, Ser, Met и Суs, одна из аминокислот из А2 присоединена через пептидную связь; Y представляет собой пептидный остаток двух аминокислотных остатков, который состоит из комбинации остатка Gly и остатка одной аминокислоты, выбранной из А3, или пептидный остаток двух аминокислотных остатков, который состоит из комбинации остатка Pro и остатка одной аминокислоты, выбранной из D-Arg, D-Lys и D-Orn; Z представляет собой пептидный остаток двух аминокислотных остатков, где в следующем положении одного остатка аминокислоты, выбранной из Ala, Val, Leu, Ile, Ser, Met и A2, Cys присоединен через пептидную связь; и остаток X-Y-Z, присоединенный пептидными связями, присоединен к каждому аминокислотному остатку в 6-м и 10-м положениях пептидными связями, или из-за одновременно действующей делеции Х и Z, остаток Y может быть присоединен напрямую к каждому аминокислотному остатку в 6-м и 10-м положениях пептидными связями, где атом водорода находящейся в боковой цепи ![]() ![]() (5) фармацевтической композиции или лекарственной композиции, включающей в себя эффективное количество соединения соли переходного металла с полипептидом или кислотной соли присоединения указанного соединения соли переходного металла с полипептидом согласно (1) и фармацевтический носитель; (6) композиции по п. (5), ингибирующей вирусную активность; и (7) композиции по п.(5), ингибирующей активность ВИЧ у пациента. В качестве примеров ацильных групп, на которые может быть заменен атом водорода в вышеупомянутом положении N- ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Ala, Arg, Cys, Ile, Gly, Leu, Ser, Met, Lys, Orn, Phe, Pro, Trp, Tyr, Val, DArg, DLys, Dorn, Ac-Arg (N- ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() (в которой A1 независимо представляет собой остаток основной аминокислоты, выбранной из Lys (лизина), Аrg (аргинина) и Оrn (орнитина); остаток пептида, имеющий, по меньшей мере, два из указанных остатков основных аминокислот; или остаток N- ![]() ![]() ![]() A2 независимо представляет собой остаток аминокислоты, выбранной из Phe, Trp и Туr; А3 независимо представляет собой остаток основной аминокислоты, выбранной из Аrg, Lys и Оrn; А4 представляет собой -ОН (происходящий из карбоксильной группы) или -NH2 (происходящий из группы кислого амида); Х представляет собой пептидный остаток из двух аминокислотных остатков, где в следующем положении одного остатка аминокислоты, выбранной из Ala, Val, Leu, Ile, Ser, Met и Суs, одна из аминокислот из А2 присоединена через пептидную связь; Y представляет собой пептидный остаток двух аминокислотных остатков, который состоит из комбинации остатка Gly и остатка одной аминокислоты, выбранной из А3, или пептидный остаток двух аминокислотных остатков, который состоит из комбинации остатка Pro и остатка одной из аминокислот, выбранной из D-Arg, D-Lys и D-Orn; Z представляет собой пептидный остаток двух аминокислотных остатков, где в следующем положении одного остатка аминокислоты, выбранной из Ala, Val, Leu, Ile, Ser, Met и А2, Суs присоединен через пептидную связь; и остаток X-Y-Z, присоединенный через пептидную связь, присоединен к каждому аминокислотному остатку в 6-м и 10-м положениях через пептидные связи, или в результате конкурентной делеции Х и Z, остаток Y может быть присоединен напрямую к каждому аминокислотному остатку в 6-м и 10-м положениях через пептидные связи, где атом водорода находящейся в боковой цепи ![]() ![]() Полипептид, показанный в формуле [I] настоящего изобретения, можно непосредственно получить известными способами, например с помощью метода твердофазного синтеза, описанного в “Solid Phase Peptide Synthesis”, Stuart&Young, Pierce Chemical Co. , Rockford, Illinois (1984). В случае остатка N- ![]() ![]() ![]() ![]() ![]() ![]() ![]() Соединение соли переходного металла с полипептидом формулы [I] имеет свойство связывать эндотоксины, обладает антибактериальной активностью и способностью гемолизировать форменные элементы крови, чувствительные к эндотоксинам. Кроме того, соединение соли переходного металла с полипептидом согласно изобретению обладает чрезвычайно высокой антивирусной активностью. В конкретном варианте осуществления изобретения соединение соли переходного металла с полипептидом согласно изобретению обладает активностью против ВИЧ. Лекарство, в частности средство против ВИЧ, согласно изобретению можно приготовить в виде лекарственной композиции, включающей в себя соединение соли переходного металла с полипептидом, показанным в формуле [I], или соль присоединения указанного соединения соли переходного металла и полипептида с фармацевтически пригодной кислотой в качестве эффективного компонента, а также фармацевтически пригодный носитель, выбранный в соответствии со способом назначения и способом приема лекарственного средства. В качестве примеров фармацевтически пригодных носителей приведены физиологически совместимые буферы, такие как растворы Хэнкса или Рингера, физиологический раствор, физиологический раствор глюкозы или их смесь, а также гепаринизированный раствор из лимонной кислоты, цитрата натрия и декстрозы. Средство против ВИЧ согласно изобретению назначают для приема внутрь или для парентерального введения, в зависимости от объекта, против которого проводят лечение, или для дезинфекции от вирусной болезни внутри тела, либо для дезинфекции пораженных вирусом наружных участков тела, таких как поверхность тела, и его можно приготовить в такой препаративной форме как порошок, гранулы, раствор для инъекций или для приема внутрь, таблетки, суппозитории, пессарии, мазь, крем или аэрозоль, с использованием подходящего фармацевтически пригодного носителя, в соответствии со способом назначения и приема лекарственного средства. В случае, когда средство против ВИЧ согласно изобретению назначают пациенту напрямую в виде инъекций, то полипептид или его соль согласно изобретению растворяют в физиологическом растворе и вводят постоянно или прерывисто в количестве от 10 до 5000 мг на кг веса тела человека в день или путем внутривенного вливания через капельницу. ПРИМЕРЫ Ниже показаны примеры осуществления настоящего изобретения, которые не исчерпывают объема данного изобретения. В нижеприведенных примерах описаны примеры получения солей переходного металла с полипептидом (1) и полипептидом (2) и приведены результаты анализов на активность против ВИЧ для солей переходного металла с полипептидом согласно изобретению, а также для известных полипептидов, обладающих сродством к эндотоксинам. ПРИМЕР 1: ПОЛУЧЕНИЕ КОМПЛЕКСНОЙ СОЛИ ЦИНКА С ПОЛИПЕПТИДОМ (1) Следующий полипептид (1) (см. в конце описания) синтезировали и получили с помощью способа, описанного в патенте США 5571892 (международная публикация WO 92/04374) и в патенте США 5449752 (выложенная заявка на патент Японии 163298/1993). 1.1. ПОЛУЧЕНИЕ ВОССТАНОВЛЕННОЙ ФОРМЫ ПОЛИПЕПТИДА (1) Ацетат полипептида (1) (10,2 мг, 3,37 мкмоль), полученный в соответствии с вышеупомянутой международной публикацией РСТ, растворяли в очищенной воде (0,5 мл). К этому раствору добавляли дитиотрейтол (производства корпорации Сейкагаку) (26,0 мг, 169 мкмоль), в количестве 50-кратного эквивалента по отношению к полипептиду (1), промывали газообразным азотом и перемешивали в потоке азота при комнатной температуре в течение двух часов. Ход указанной реакции восстановления отслеживали с помощью ВЭЖХ, чтобы подтвердить окончание процесса восстановления. После завершения реакции восстановления указанный реакционный раствор загружали в колонку (2,5 х 70 см) с сефадексом G-25 (тонкий), (производства компании фармация Биотех. Кo Лтд.), который предварительно уравновешивали водным раствором 25%-ной уксусной кислоты, извлекли из адсорбента с помощью того же самого водного раствора 25%-ной уксусной кислоты и затем подвергли фракционированию (1 фракция = 224 капли). Фракционные порции с номерами фракций 26 и 27, которые проявили положительную реакцию Элльмана (G.L.Ellman, Arch. Biochem. Biophys. , 82, 70 (1959); способ обнаружения тиоловых групп) и при реакции флуоресценции (A.M.Felix et al., J. Chromatogr., 89, 361 (1974), способ флуоресцентного обнаружения аминогрупп), собирали раствор указанных фракций, концентрировали в условиях вакуума и после разбавления водным раствором 10%-ной уксусной кислоты этот раствор подвергали лиофилизации и в результате получали желаемый ацетат восстановленной формы полипептида (1), что и требовалось. Выход: 6,8 мг (67%). 1.2. АНАЛИЗ ВОССТАНОВЛЕННОЙ ФОРМЫ ПОЛИПЕПТИДА (1) Ацетат восстановленной формы полипептида (1), полученный в разделе 1.1, подвергали кислотному гидролизу в 4М метансульфоновой кислоте, содержащей 0,2% триптамина, при 115oС в течение 24 часов, по методу Лю и др. (T.-Y. Liu et al. , J.Biol. Chem., 251, 1936 (1976)). Его аминокислотный состав хорошо согласовывался с аминокислотным составом восстановленной формы полипептида (1). Удельное оптическое вращение [ ![]() Колонка: TSK-гель ОДС – 120 Т (0,46 ![]() ![]() Элюенты: 10% ацетонитрил / 0,1% трифторуксусная кислота (раствор A). 80% ацетонитрил / 0,1% трифторуксусная кислота (раствор B). Условия градиента: Время градиента: 1,0 мин; 29,4 мин; 35,0 мин. Концентрация раствора В соответственно: 0%; 42%; 100%. Концентрация раствора А соответственно: 10%; 39,4%; 80%. Температура: 40oС. Расход: 0,8 мл/мин. Обнаружение: 220 нм и 280 нм. Использованное количество: 5 мкл (концентрация пептида: 1 мг/мл). Время элюирования: ацетат восстановленной формы полипептида (I): 19,27 мин, ацетат полипептида (I): 18,24 мин. 1.3. ПОЛУЧЕНИЕ КОМПЛЕКСНОЙ СОЛИ ВОССТАНОВЛЕННОЙ ФОРМЫ ПОЛИПЕПТИДА (1) И ИОНА ЦИНКА (II) Ацетат восстановленной формы полипептида (1), полученный в разделе 1.1., растворяли в очищенной воде или в 1М буферном растворе ацетата аммония (рН 7.2). К этому водному раствору или буферному раствору добавляли водный раствор 0,005 М ацетата цинка, соответствующий двум эквивалентам иона цинка (II) по отношению к восстановленной форме полипептида (1). Окончательную концентрацию полипептида довели до 5 мг/л и получили комплексный раствор восстановленной формы полипептида (1) и иона цинка (II). 1.4. ПОДТВЕРЖДЕНИЕ СТРУКТУРЫ КОМПЛЕКСНОЙ СОЛИ ВОССТАНОВЛЕННОЙ ФОРМЫ ПОЛИПЕПТИДА (1) И ИОНА ЦИНКА (II) С ПОМОЩЬЮ ИОННО-РАСПЫЛИТЕЛЬНОЙ МАСС-СПЕКТРОМЕТРИИ Порцию комплексного раствора восстановленной формы полипептида (1) и иона цинка (II), полученного в разделе 1.3, использовали в качестве тестируемого раствора для структурного анализа и провели структурный анализ методом ионно-распылительной масс-спектрометрии при нижеследующих условиях. УСЛОВИЯ ИОННО-РАСПЫЛИТЕЛЬНОЙ МАСС-СПЕКТРОМЕТРИИ Оборудование: трехстадийный квадрупольный масс-спектрометр типа АР IIIE (изготовитель – Перкин-Эльмер Сайекс К0., Лтд., обслуживание – Такара Шузо К0., Лтд). Инфузия образца: для инфузии образца со скоростью расхода в 5 мкл/мин использовали шприцевый насос для инфузии 22 Харвард Аппаратус (Саут Нейтик, МАСС). Напряжение на диафрагме: 130 вольт. Область масс-спектров и тому подобное: масса против электрического заряда (m/z) 600 – 1800 (в положительном режиме ионов, с шагом в 0,5 атомных единиц массы, в среднем из 30 циклов сканирования). Анализ полученных данных проводили с помощью Масsрес 3/22 (Sciex). РЕЗУЛЬТАТЫ ИОННО-РАСПЫЛИТЕЛЬНОЙ МАСС-СПЕКТРОМЕТРИИ Измеряли значения массы для состояния зарядов +2 и +3 (m/z: 1277,00 и 851,67 соответственно), и реконструированное значение массы (m/z: 2552,48) хорошо согласовывалось с расчетным значением массы для восстановленного полипептида (1) + Zn – 4Н (m/z: 2552,40). Иначе говоря, было показано, что полипептид (1) и ион цинка (II) образуют комплекс, в котором соотношение пептид: Zn равно 1:1. ОБСУЖДЕНИЕ Уже сообщалось, что структуру комплекса, состоящего из пептида или белка и металла, можно идентифицировать с помощью ионно-распылительной масс-спектрометрии или электрораспылительной масс-спектрометрии. Например, см. анализ цинковой пальцевой структуры домена связывания ДНК глюкокортикоидного рецептора (H. E. Witkowska et al., J. Amer. Chem. Soc., 117, 3319 (1995)), анализ координации структуры меди по отношению к цинковой пальцевой области белка (T. W. Hutchens et al., FEBS Lett., 309, 170 (1992)), обзор Umeda по ионно-распылительной масс-спектрометрии (Tanpakyshitsu Kakusan Koso, 36, 1655 (1991)) и подобные им работы. С помощью этого эксперимента также установили, что структуру комплекса восстановленной формы полипептида (1) и иона цинка (II) можно идентифицировать с помощью ионно-распылительной масс-спектрометрии. 1.5 ПОДТВЕРЖДЕНИЕ СТРУКТУРЫ КОМПЛЕКСНОЙ СОЛИ ВОССТАНОВЛЕННОЙ ФОРМЫ ПОЛИПЕПТИДА (1) И ИОНА ЦИНКА (II) С ПОМОЩЬЮ УЛЬТРАФИОЛЕТОВОЙ АДСОРБЦИОННОЙ СПЕКТРОФОТОМЕТРИИ Порции водного раствора восстановленной формы полипептида (1), полученной в р.1.1, и комплексного раствора восстановленной формы полипептида (1) и иона цинка (II), полученного в разделе 1.3, использовали в качестве тестируемого раствора для структурного анализа, и структурный анализ проводили посредством измерения спектров ультрафиолетового поглощения и их дифференциальных спектров в указанных ниже условиях. ИЗМЕРЕНИЕ СПЕКТРОВ УЛЬТРАФИОЛЕТОВОГО ПОГЛОЩЕНИЯ Оборудование: спектрофотометр ультрафиолетового-видимого излучения Ubest 30 (Нихон-Бунко К0., Лтд). Измеряемая длина волны: 200 – 340 нм. Образец: после помещения каждого свежеприготовленного тестируемого образца в измерительную трубку его промывали газообразным азотом и немедленно проводили измерение. Нормальные спектры ультрафиолетового поглощения: Контроль: дистиллированная вода. Тестируемый образец: раствор восстановленной формы полипептида (1) и комплексный раствор восстановленной формы полипептида (1) и иона цинка (II). Дифференциальные ультрафиолетовые спектры: Контроль: раствор восстановленной формы полипептида (1). Тестируемый образец: комплексный раствор восстановленной формы полипептида (1) и иона цинка (II). РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ СПЕКТРОВ УЛЬТРАФИОЛЕТОВОГО ПОГЛОЩЕНИЯ Нормальные спектры ультрафиолетового поглощения: Раствор восстановленной формы полипептида (1): Продемонстрировали наличие большого пика поглощения при 250-300 нм, который характерен для поглощения, обусловленного триптофаном – аминокислотой, входящей в состав полипептида (1). Продемонстрировали максимум поглощения при 278 нм и плечо спектральной линии при 280 нм, которые характерны для поглощения, обусловленного триптофаном. Комплексный раствор восстановленной формы полипептида (1) и иона цинка (II): Получили кривую поглощения, которая была уширена по отношению к кривой поглощения вышеупомянутого раствора восстановленной формы полипептида (I), с диапазоном от 250 до 200 нм. Для того чтобы уточнить длины волн поглощения, провели измерения нижеследующего дифференциального спектра. Дифференциальный ультрафиолетовый спектр: Получили дифференциальный спектр с пиком от 215 до 235 нм и его разницу поглощения. АНАЛИЗ ПОЛУЧЕННЫХ СПЕКТРОВ УЛЬТРАФИОЛЕТОВОГО ПОГЛОЩЕНИЯ Как показано выше, при добавлении иона цинка (II) к восстановленной форме полипептида (1) ультрафиолетовое поглощение уширяется главным образом в диапазоне от 215 до 235 нм. Это дает основание полагать, как обсуждается ниже, что в растворе восстановленной формы полипептида (1) и иона цинка (II) SH-группа цистеина восстановленной формы полипептида (1) образует комплекс с ионом цинка через меркаптидную связь. ОБСУЖДЕНИЕ Известно, что металлотионеин, белок, имеющий отношение к детоксикации тяжелого металла, имеет структуру, в которой SH-группа являющегося его составной частью остатка цистеина образует комплекс с ионом кадмия (II), цинка (II), меди (I, II), ртути (II) или им подобных через меркаптидную связь, и когда металл связывается с апо-металотионеином (SH-форма), то ультрафиолетовое поглощение увеличивается в пределах спектра с длинами волн, характерных для меркаптидной связи каждого металла. Например, известно, что в случае меркаптидного комплекса связи с ионом цинка (II) ультрафиолетовое поглощение увеличивается и уширяется главным образом в диапазоне 220-230 нм (см. J.H.R. Kagi and B.L.Vallee, J. Biol. Chem., 236, 2435 (1961); M.Vasak et al., Biochemistry, 20, 2852 (1981); A.R.Thrower et al., J. Biol. Chem., 263, 7037 (1988); J.H.R.Kagi et al., Environmental Health Perspectives, 54, 93 (1984) и подобные работы). Широкий диапазон, в котором увеличивается ультрафиолетовое поглощение (220-230 нм) благодаря меркаптидной связи этого иона цинка (II) согласуется с увеличенным диапазоном длин волн дифференциального спектра, наблюдавшегося для вышеупомянутого раствора восстановленной формы полипептида (1) и иона цинка (II). Иначе говоря, выяснили, что в растворе восстановленной формы полипептида (1) и иона цинка (II) SН-группа цистеина восстановленной формы полипептида (1) образует меркаптидную связь с ионом цинка (II). 1.6 АКТИВНОСТЬ ПРОТИВ ВИЧ КОМПЛЕКСНОЙ СОЛИ ВОССТАНОВЛЕННОЙ ФОРМЫ ПОЛИПЕПТИДА (1) И ИОНА ЦИНКА (II) Порцию комплексного раствора восстановленной формы полипептида (1) и иона цинка (II), полученного в п.1.3, использовали в качестве тестируемого раствора для измерения активности против ВИЧ и измеряли эту активность против ВИЧ. ПРИМЕР 2: ПОЛУЧЕНИЕ КОМПЛЕКСНОЙ СОЛИ ЦИНКА С ПОЛИПЕПТИДОМ (2) Полипептид (2) (см. в конце описания), показанный в нижеследующей формуле, получали согласно способу, описанному в международной публикации РСТ WO 95/10534. 2.1 ПОЛУЧЕНИЕ ВОССТАНОВЛЕННОЙ ФОРМЫ ПОЛИПЕПТИДА (2) Ацетат полипептида (2) (10,0 мг, 3,94 мкмоль), полученный в соответствии с вышеупомянутой международной публикацией РСТ, растворяли в очищенной воде (0,5 мл). К этому раствору добавляли дитиотреитол (32,0 мг, 207,5 мкмоль) (производства корпорации Сейкагаку) в количестве 53-кратного эквивалента по отношению к полипептиду (2), промывали газообразным азотом и перемешивали в потоке азота при комнатной температуре в течение двух часов. Протекание указанной реакции восстановления отслеживали с помощью ВЭЖХ и подтвердили полное восстановление. После завершения реакции восстановления указанный реакционный раствор загружали в колонку (2,5 х 70 см) с сефадексом G-25 (тонкий), (производства компании фармация Биотех. К0., Лтд.), который предварительно уравновешивали водным раствором 25%-ной уксусной кислоты, извлекали из адсорбента с помощью того же самого водного раствора 25%-ной уксусной кислоты и затем подвергали фракционированию (1 фракция = 224 капли). Фракционные порции с номерами фракций 26 и 27, которые проявляли положительную реакцию при анализе с помощью реакции Элльмана и с помощью реакции флуоресценции, собирали, раствор указанных фракций концентрировали в вакууме, и после разбавления водным раствором 10%-ной уксусной кислоты этот раствор подвергали лиофилизации, в результате чего получали ацетат восстановленной формы полипептида (2), что и требовалось. Выход: 9,8 мг (98%). 2.2 АНАЛИЗ ВОССТАНОВЛЕННОЙ ФОРМЫ ПОЛИПЕПТИДА (2) Ацетат восстановленной формы полипептида (2), полученный в разделе 2.1, подвергали кислотному гидролизу в 4М метансульфоновой кислоте, содержащей 0,2% триптамина, при 115oС в течение 24 часов, по методу Liu et al., таким же образом, как это делали для полипептида (1) в разделе 1.2. Его аминокислотный состав хорошо согласовывался с аминокислотным составом восстановленной формы полипептида (2). Удельное оптическое вращение [ ![]() Время элюирования: ацетат восстановленной формы полипептида (2) – 16,14 мин ацетат полипептида (2) – 15,87 мин 2.3. ПОЛУЧЕНИЕ КОМПЛЕКСНОЙ СОЛИ ВОССТАНОВЛЕННОЙ ФОРМЫ ПОЛИПЕПТИДА (2) И ИОНА ЦИНКА (II) Ацетат восстановленной формы полипептида (2), полученный в разделе 2.1, растворяли в очищенной воде или в 1М буферном растворе ацетата аммония (рН 7.2). К этому водному раствору или буферному раствору добавляли водный раствор 0,005 М ацетата цинка, соответствующий одному эквиваленту иона цинка (II) по отношению к восстановленной форме полипептида (2). Окончательную концентрацию полипептида доводили до 5 мг/л и получили комплексный раствор восстановленной формы полипептида (2) и иона цинка (II). 2.4. ПОДТВЕРЖДЕНИЕ СТРУКТУРЫ КОМПЛЕКСНОЙ СОЛИ ВОССТАНОВЛЕННОЙ ФОРМЫ ПОЛИПЕПТИДА (2) И ИОНА ЦИНКА (II) С ПОМОЩЬЮ ИОННО-РАСПЫЛИТЕЛЬНОЙ МАСС-СПЕКТРОМЕТРИИ Порцию комплексного раствора восстановленной формы полипептида (2) и иона цинка (II), полученного в разделе 2.3, использовали в качестве тестируемого раствора для структурного анализа, и проводили структурный анализ методом ионно-распылительной масс-спектрометрии, при тех же самых условиях, при которых проводили ионно-распылительную масс-спектрометрию комплексного раствора восстановленной формы полипептида (1) и иона цинка (II), как описано в разделе 1.4. РЕЗУЛЬТАТЫ ИОННО-РАСПЫЛИТЕЛЬНОЙ МАСС-СПЕКТРОМЕТРИИ Наблюдали значения массы для состояний зарядов +2 и +3 (m/z: 1030,50 и 687,34 соответственно), и реконструированное значение массы (m/z: 2059,98) хорошо согласовывалось с расчетным значением массы для восстановленного полипептида (2) +Zn-4H (m/z: 2059,83). Иначе говоря, показали, что восстановленный полипептид (2) и ион цинка (II) образуют комплекс, в котором соотношение пептид : Zn равно 1:1. 2.5 ПОДТВЕРЖДЕНИЕ СТРУКТУРЫ КОМПЛЕКСНОЙ СОЛИ ВОССТАНОВЛЕННОЙ ФОРМЫ ПОЛИПЕПТИДА (2) И ИОНА ЦИНКА (II) ПОСРЕДСТВОМ УЛЬТРАФИОЛЕТОВОЙ АДСОРБЦИОННОЙ СПЕКТРОФОТОМЕТРИИ Порции водного раствора восстановленной формы полипептида (2), полученного в разделе 2.1, и комплексного раствора восстановленной формы полипептида (2) и иона цинка (II), полученного в разделе 2.3, использовали в качестве тестируемого раствора для структурного анализа, и структурный анализ проводили посредством измерения спектров ультрафиолетового поглощения и их дифференциальных спектров, в тех же самых условиях, которые использовали для полипептида (1) в р.1.5. ИЗМЕРЕНИЕ СПЕКТРОВ УЛЬТРАФИОЛЕТОВОГО ПОГЛОЩЕНИЯ Нормальные спектры ультрафиолетового поглощения: Контроль: дистиллированная вода. Тестируемый раствор: раствор восстановленной формы полипептида (2) и раствор комплексной соли восстановленной формы полипептида (2) и иона цинка (II). Дифференциальные ультрафиолетовые спектры: Контроль: раствор восстановленной формы полипептида (2). Тестируемый раствор: комплексный раствор восстановленной формы полипептида (2) и иона цинка (II). РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ СПЕКТРОВ УЛЬТРАФИОЛЕТОВОГО ПОГЛОЩЕНИЯ Нормальные спектры ультрафиолетового поглощения: Раствор восстановленной формы полипептида (2): обнаружили наличие большого пика поглощения при 250 – 300 нм, который характерен для поглощения, обусловленного триптофаном – аминокислотой, входящей в состав полипептида (2). Продемонстрировали максимум поглощения при 278 нм и плечо спектральной линии при 280 нм, которые характерны для поглощения, обусловленного триптофаном. Комплексный раствор восстановленной формы полипептида (2) и иона цинка (II): получили кривую поглощения, которая была уширена по отношению к кривой поглощения вышеупомянутого раствора восстановленной формы полипептида (2), с диапазоном примерно от 250 до 200 нм. Дифференциальный ультрафиолетовый спектр: Получили дифференциальный спектр с пиком в диапазоне от 215 до 235 нм и его разницу поглощения. АНАЛИЗ ПОЛУЧЕННОГО СПЕКТРА УЛЬТРАФИОЛЕТОВОГО ПОГЛОЩЕНИЯ Как было показано выше, при добавлении иона цинка (II) к восстановленной форме полипептида (2) наблюдали, что ультрафиолетовое поглощение уширяется главным образом в диапазоне от 215 до 235 нм. Соответственно, показали, что в растворе восстановленной формы полипептида (2) и иона цинка (II) SH-группа цистеина восстановленной формы полипептида (2) образует комплекс с ионом цинка через меркаптидную связь. 2.6 АКТИВНОСТЬ ПРОТИВ ВИЧ КОМПЛЕКСНОЙ СОЛИ ВОССТАНОВЛЕННОЙ ФОРМЫ ПОЛИПЕПТИДА (2) И ИОНА ЦИНКА (II) Порцию комплексного раствора восстановленной формы полипептида (2) и иона цинка (II), полученного, как описано выше, использовали в качестве тестируемого раствора для измерения активности против ВИЧ и измеряли эту активность против ВИЧ. ПРИМЕР 3: АНТИВИРУСНАЯ АКТИВНОСТЬ ПРОТИВ ВИРУСА ИММУНОДЕФИЦИТА ЧЕЛОВЕКА (ВИЧ) Антивирусную активность против ВИЧ комплекса цинка с полипептидом (1), полученного в соответствии с примером 1, и комплекса цинка с полипептидом (2), полученного в соответствии с примером 2, испытывали и определяли согласно нижеследующему способу. В 96-луночный микротитрационный планшет непосредственно после заражения поместили ВИЧ-инфицированные клетки МТ-4 (2,5 х 104 клеток/лунку, множественность заражения: 0,001), наряду с испытуемыми материалами в разных концентрацииях. После инкубации в инкубаторе с CO2 при 37oС в течение 5 дней определяли количество выживших клеток, с помощью метода МТТ (Pauwels et al., J. Virol. Methods 20, 309-321 (1998)). Антивирусную активность выражали в виде концентрации, которая предотвращала на 50% гибель клеток, вызванную заражением ВИЧ (ЕС50: концентрация с 50%-ной эффективностью). С другой стороны, для того чтобы выяснить цитотоксичность испытуемых веществ для клеток МТ-4, культивировали не зараженные вирусом клетки вместе с испытуемыми материалами в различных концентрациях, как описано выше. Цитотоксичность выражали в виде концентрации, вызывающей 50%-ную цитотоксичность (CC50), обусловленную испытуемыми материалами, а примерное отношение СС50 к EC50 обозначали как эффективное отношение (SI). Результаты измерений активности против ВИЧ показаны в таблице 2, наряду с результатами по другим соединениям. ПЕРЕЧЕНЬ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Идентификационный номер последовательности: 1 Длина последовательности: 14 Тип последовательности: аминокислотный Топология: линейная Молекулярный тип: пептид Характеристика: Местоположение: 1 Прочая информация: Хаа независимо представляет собой остаток основной аминокислоты, выбранной из лизина, аргинина и орнитина; остаток пептида, имеющий, по меньшей мере, два из указанных остатков основных аминокислот; или остаток N- ![]() ![]() ![]() Прочая информация: Хаа независимо представляет собой остаток аминокислоты, выбранной из фенилаланина, триптофана и тирозина. Местоположение: 4 Прочая информация: Хаа независимо представляет собой остаток аминокислоты, выбранной из фенилаланина, триптофана и тирозина. Местоположение: 5, 6 Прочая информация: Хаа независимо представляет собой остаток основной аминокислоты, выбранной из аргинина, лизина и орнитина. Местоположение: 7 Прочая информация: Хаа независимо представляет собой пептидный остаток из двух аминокислотных остатков, в котором в следующем положении остатка одной аминокислоты, выбранной из аланина, валина, лейцина, изолейцина, серина, метионина и цистеина, одна из следующих аминокислот – фенилаланин, триптофан или тирозин -присоединена через пептидную связь. Местоположение: 8 Прочая информация: Хаа представляет собой пептидный остаток из двух аминокислотных остатков, который состоит из комбинации остатка глицина и остатка одной аминокислоты, выбранной из аргинина, лизина и орнитина, или пептидный остаток из двух аминокислотных остатков, который состоит из комбинации остатка пролина и остатка одной аминокислоты, выбранной из D-аргинина, D-лизина и D-орнитина. Местоположение: 9 Прочая информация: Хаа представляет собой пептидный остаток из двух аминокислотных остатков, в котором в следующем положении одного остатка аминокислоты, выбранной из аланина, валина, лейцина, изолейцина, серина, метионина, фенилаланина, триптофана и тирозина, цистеин присоединен через пептидную связь. Местоположение: 7, 8, 9 Прочая информация: Остаток Хаа-Хаа-Хаа, присоединенный через пептидную связь, присоединен к каждому аминокислотному остатку в 6-м и 10-м положениях через пептидные связи, или из-за одновременно действующей делеции Хаа в 7-м положении и Хаа в 9-м положении, остаток Хаа в 8-м положении может быть присоединен напрямую к каждому аминокислотному остатку в 6-м и 10-м положениях, через пептидные связи, где водород находящейся в боковой цепи ![]() ![]() Прочая информация: Хаа независимо представляет собой остаток аминокислоты, выбранной из фенилаланина, триптофана и тирозина. Местоположение: 11, 12 Прочая информация: Хаа независимо представляет собой остаток основной аминокислоты, выбранной из аргинина, лизина и орнитина. Местоположение: 14 Прочая информация: Хаа независимо представляет собой остаток основной аминокислоты, выбранной из аргинина, лизина и орнитина. Формула изобретения
![]() (Идентификационный последовательности: 1), в которой A1 независимо представляет собой остаток основной аминокислоты, выбранной из Lys, Arg и Orn, или остаток пептида, имеющий по меньшей мере два из указанных остатков основных аминокислот; А2 независимо представляет собой остаток аминокислоты, выбранной из Phe, Trp и Туr; А3 независимо представляет собой остаток основной аминокислоты, выбранной из Lys, Arg и Orn; А4 представляет собой -ОН (происходящий из карбоксильной группы) или -NH2 (происходящий из группы кислого амида); Х представляет собой пептидный остаток двух аминокислотных остатков, где первый аминокислотный остаток выбран из Ala, Val, Leu, Ile, Ser, Met и Cys, а второй аминокислотный остаток выбран из A2, присоединенных через пептидную связь; Y представляет собой пептидный остаток из двух аминокислотных остатков, который состоит из комбинации остатка Gly и остатка аминокислоты, выбранной из А3, или пептидный остаток из двух аминокислотных остатков, который состоит из комбинации остатка Pro и остатка одной аминокислоты, выбранной из D-Arg, D-Lys и D-Orn; Z представляет собой пептидный остаток из двух аминокислотных остатков, где к одному остатку аминокислоты, выбранной из Ala, Val, Leu, Ile, Ser, Met и А2, присоединен Cys через пептидную связь; и остаток X-Y-Z, соединенный пептидными связями, присоединен к каждому аминокислотному остатку в 6-м и 10-м положениях пептидными связями, или в результате конкурентной делеции Х и Z, остаток Y может быть присоединен напрямую к каждому аминокислотному остатку в 6-м и 10-м положениях пептидными связями. 2. Соединение соли переходного металла с полипептидом по п. 1, в котором соль переходного металла представляет собой комплексную соль. 3. Соединение соли переходного металла с полипептидом по п. 1 или 2, в котором переходный металл выбирают из группы, состоящей из группы железа в составе Fе, Со и Ni, из группы меди в составе Сu, Аg и Аu, из группы цинка в составе Zn, Cd и Нg и из группы марганца в составе Мn, Тc и Re. 4. Способ повышения активности против ВИЧ соединения полипептида, показанного в следующей формуле: ![]() (Идентификационный последовательности: 1), в которой A1 независимо представляет собой остаток основной аминокислоты, выбранной из Lys, Arg и Orn, или остаток пептида, имеющий по меньшей мере два из указанных остатков основных аминокислот; А2 независимо представляет собой остаток аминокислоты, выбранной из Phe, Trp и Туr; А3 независимо представляет собой остаток основной аминокислоты, выбранной из Lys, Arg и Orn; А4 представляет собой -ОН (происходящий из карбоксильной группы) или -NH2 (происходящий из группы кислого амида); Х представляет собой пептидный остаток двух аминокислотных остатков, где первый аминокислотный остаток выбран из Ala, Val, Leu, Ile, Ser, Met и Cys, а второй аминокислотный остаток выбран из A2, присоединенных через пептидную связь; Y представляет собой пептидный остаток из двух аминокислотных остатков, который состоит из комбинации остатка Gly и остатка аминокислоты, выбранной из А3, или пептидный остаток из двух аминокислотных остатков, который состоит из комбинации остатка Pro и остатка одной аминокислоты, выбранной из D-Arg, D-Lys и D-Orn; Z представляет собой пептидный остаток из двух аминокислотных остатков, где к одному остатку аминокислоты, выбранной из Ala, Val, Leu, Ile, Ser, Met и А2, присоединен Cys через пептидную связь; и остаток X-Y-Z, соединенный пептидными связями, присоединен к каждому аминокислотному остатку в 6-м и 10-м положениях пептидными связями, или в результате конкурентной делеции Х и Z, остаток Y может быть присоединен напрямую к каждому аминокислотному остатку в 6-м и 10-м положениях пептидными связями, заключающийся в том, что указанный полипептид (I) переводят в соль с переходным металлом. 5. Фармацевтическая композиция, обладающая антивирусной активностью, включающая в себя эффективное количество соединения соли переходного металла с полипептидом по п. 1, и фармацевтически приемлемый носитель. 6. Фармацевтическая композиция по п. 5, ингибирующая вирусную активность. 7. Фармацевтическая композиция по п. 5, ингибирующая активность ВИЧ в организме пациента. РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 16.10.2003
Извещение опубликовано: 10.05.2005 БИ: 13/2005
|
||||||||||||||||||||||||||