Патент на изобретение №2177007
|
||||||||||||||||||||||||||
(54) СПОСОБ ПОЛУЧЕНИЯ ПОЛИЭТИЛЕНА
(57) Реферат: Изобретение относится к технологии производства полиэтилена методом радикальной полимеризации в массе при высоком давлении в трубчатом и автоклавном реакторах и может быть использовано в химической и нефтехимической промышленности. Сущность способа заключается в ведении процесса полимеризации этилена при давлении 130-200 МПа, температуре до 270oС и инициировании полимеризации органическими пероксидами, подаваемыми в среде олигомера этилена со среднечисленной молекулярной массой 170-340 и 15-20 двойными связями на 1000 углеродных атомов. При этом указанным олигомером этилена является олигомер со среднечисленной молекулярной массой 170-340, выделенный как фракция из низкомолекулярного полиэтилена из системы рециклов низкого и высокого давлений производства полиэтилена, или олигомер, полученный методом термической деструкции высокомолекулярного полиэтилена. Способ позволяет стабилизировать работу узла приготовления и подачи растворов пероксидов в реактор, использовать для приготовления растворов пероксидов оборудование в обычном (не во взрывоопасном исполнении) и получать полиэтилен с показателями – прозрачность 58-71% и содержанием экстрагируемых веществ в полиэтилене 0,25-0,27 мас. % для полиэтилена, получаемого в трубчатом реакторе, и 0,41-44 мас. % для полиэтилена, получаемого в автоклавном реакторе. 2 з.п. ф-лы, 1 табл. Изобретение относится к технологии производства полиэтилена методом радикальной полимеризации в массе при высоком давлении и может быть использовано в химической и нефтехимической промышленности. Известен (авторское свидетельство СССР N 1024451, МКИ С 08 F 10/02, опубл. 23.06.83) способ получения полиэтилена в массе по методу высокого давления в автоклавном или трубчатом реакторах при температуре 200-300oC и давлении 120-250 МПа в присутствии радикалообразующего инициатора, например, ди-трет-бутилпероксида, ди-лауроилпероксида, трет-бутилпероксибензоата, подаваемого в реактор в растворителе, при этом в качестве растворителя используют смесь, состоящую из полиоргансилоксана и циклического органосилоксана с числом атомов кремния в цикле 3-6 при их массовом соотношении 1:1 – 1:9, или смесь, состоящую из полиорганосилоксана и углеводородного растворителя с температурой кипения 28-220oC при их массовом соотношении 1:1 – 1:5. В качестве полиорганосилоксанов используют, например, полиметилсилоксан, полиэтилсилоксан; в качестве циклических органосилоксанов – октаметилциклотрисилоксан, гексаметилциклотрисилоксан или додекаметилциклогексасилоксан; в качестве углеводородных растворителей – бензин, керосин, уайт-спирит, изопентан, изооктан. Полученный полиэтилен отделяют от непрореагировавшего этилена и образующегося при синтезе низкомолекулярного полиэтилена (НМПЭ) по традиционной двухступенчатой системе рециклов высокого и низкого давлений (см. , например, книгу “Полиэтилен высокого давления. Научно-технические основы промышленного синтеза”, А.В.Поляков, Ф.И.Дунтов, А.Э.Софиев и др.-Л.: Химия, 1988, с. 14). Полиэтилен выводят из системы рециклов через разгрузочный экструдер и переводят в гранулят, а непрореагировавший этилен направляют на охлаждение и очистку от НМПЭ. Выделившийся после очистки этилена НМПЭ (в жидком и воскообразном виде) через циклоны выводят из системы, а непрореагировавший этилен смешивают с исходным этиленом и направляют в реактор. Описанным способом при ведении процесса полимеризации в трубчатом реакторе (примеры осуществления процесса полимеризации в автоклавном реакторе в описании к авт. свид. М 1024451 не приводятся) получают полиэтилен с показателем текучести расплава 1,8-7,8 г/10 мин. Недостатки указанного процесса: 1. Высокое содержание экстрагируемых веществ в полиэтилене, которое составляет 0,38-0,50 мас.% (для полиэтилена, получаемого в трубчатом реакторе). 2. Использование в качестве растворителей инициаторов углеводородов типа бензина, изопентана, уайт-спирита и др., имеющих сравнительно низкую (28-220oC) температуру кипения и температуру вспышки менее 61oC. Такие вещества в соответствии с нормативными материалами относятся к легковоспламеняющимся жидкостям (см., например, 1. ПУЭ. Правила устройства электроустановок/электрооборудования, издание N 6, 1998 г.; 2. ГОСТ 12.1.010-76 ССБТ. Взрывоопасность. Общие требования; 3. ГОСТ 12.1.044-89 ССБТ. Пожаровзрывоопасность веществ и материалов). Приготовление растворов инициаторов с применением этих веществ и их подача в реактор требуют применения дорогостоящего оборудования во взрывобезопасном исполнении. 3. Недостаточная прозрачность получаемого полиэтилена. По нашим данным прозрачность полиэтилена, полученного в условиях примера 1 авт.свид. N 1024451, составляет всего 45% (см. контрольный пример 5). Это связано с использованием органосилоксанов, приводящим к нарушению структуры производимого полиэтилена. Наиболее близким к заявляемому способу по совокупности существенных признаков и достигаемому техническому результату является способ получения полиэтилена согласно авт. свид. СССР N 979371 (МКИ С 08 F 10/02, опубл. 07.12.82), в соответствии с которым полиэтилен получают полимеризацией этилена в массе (в отсутствии растворителей этилена) при давлении 120-250 МПа и температуре 220-295oC в трубчатом реакторе с инициированием реакции полимеризации органическими пероксидами, подаваемыми в реактор в нейтральной дисперсной среде, состоящей из углеводородного растворителя и полиэтиленового воска (НМПЭ) с молекулярной массой 600-6000, температурой каплепадения 64-115oC, содержащий 3,5-11,0 двойных связей на 1000 углеводородных атомов при массовом соотношении воска и углеводородного растворителя от 1:3 до 1:9. В качестве углеводородного растворителя используют углеводороды C3 – C15 с температурой кипения до 220oC, например бензин, уайт-спирит, керосин, изооктан, гексан; в качестве органического пероксида – ди-трет-бутилпероксид, трет-бутилпероксибензоат, ди-лауроилпероксид. Полученный полиэтилен отделяют от непрореагировавшей реакционной смеси по традиционной схеме (как описано выше) в системах рециклов высокого и низкого давлений. Полиэтилен выводят из системы рециклов через разгрузочный экструдер и переводят в гранулят, а непрореагировавший этилен направляют на охлаждение и очистку от НМПЭ. Выделившийся после очистки этилена НМПЭ (в жидком и воскообразном виде) через циклоны выводят из системы, а непрореагировавший этилен смешивают с исходным этиленом и подают в реактор. Полиэтилен, получаемый в соответствии с вышеописанным способом-прототипом на установке с трубчатым реактором, имеет низкое (0,22-0,31 мас.%) содержание экстрагируемых веществ, что несомненно является достоинством способа. При осуществлении указанного процесса в автоклавном реакторе содержание экстрагируемых веществ в полиэтилене увеличивается и составляет 0,46 мас.% (см. контрольный пример 8). Это увеличение связано с общеизвестным фактом (см. ГОСТ 16337-77. Полиэтилен высокого давления), что при осуществлении аналогичного процесса в автоклавном реакторе содержание экстрагируемых веществ в получаемом полиэтилене более чем в 2 раза выше, чем в полиэтилене, полученном в трубчатом реакторе. Описанному способу-прототипу свойственны следующие недостатки. 1. Нестабильность работы узла подачи растворов пероксидов, что связано с использованием в качестве растворителя пероксидов органической дисперсии полиэтиленового воска, который высаждается с течением времени на стенках трубопроводов. Это приводит к потере проходимости линии от плунжерного насоса до реактора и, как следствие, к остановке процесса полимеризации этилена, образованию пускового некондиционного полиэтилена и снижению производительности установки в целом. 2. Применение в качестве растворителей пероксидов бензина, керосина, уайт-спирита, изооктана – веществ, относящихся к легковоспламеняющимся жидкостям, что при приготовлении растворов пероксидов и подаче их в реактор требует использования дорогостоящего оборудование во взрывобезопасном исполнении. 3. Недостаточная прозрачность (50%) полиэтиленовой пленки, изготовленной из полиэтилена, получаемого в условиях авт. свид. N 979371 – прототипа (см. контрольный пример 8). Технический результат, достижение которого обеспечивает заявляемый способ, заключается в стабилизации работы узла подачи пероксидов в реактор, улучшении качества (прозрачности) получаемого полиэтилена и снижении опасности процесса приготовления и подачи раствора пероксидов. Указанный технический результат достигается за счет того, что в способе получения полиэтилена полимеризацией этилена в массе при давлении 130-200 МПа и температуре до 270oC с инициированием реакции полимеризации органическими пероксидами, подаваемыми в реактор в среде, содержащей НМПЭ, и последующим двухступенчатым отделением полученного полиэтилена от непрореагировавшего этилена и НМПЭ в системах рециклов высокого и низкого давлений, в качестве среды, в которой подают пероксиды, используют олигомер этилена со среднечисленной молекулярной массой 170-340, содержащий 15-20 двойных связей на 1000 углеродных атомов. Возможно в качестве олигомера этилена, используемого как среда для подачи пероксидов, применять олигомер этилена с молекулярной массой 170-340, выделенный как фракция из НМПЭ из системы рециклов низкого и высокого давлений производства полиэтилена, или полученный методом термической деструкции высокомолекулярного полиэтилена. Известно (см. книгу “Полиэтилен высокого давления. Научно-технические основы промышленного синтеза”, А.В.Поляков, Ф.И.Дунтов, А.Э.Софиев и др. -Л. : Химия, 1988 г., с. 14.), что в процессе синтеза полиэтилена методом высокого давления образуется низкомолекулярный полиэтилен (НМПЭ), который, как показали выполненные нами исследования, имеет среднечисленную молекулярную массу 150-6000. Количество, агрегатное состояние и состав НМПЭ определяются типом реактора и технологическими режимами синтеза полиэтилена. НМПЭ со среднечисленной молекулярной массой 600-6000 представляет собой воскообразное вещество и имеет 3,5-11 двойных связей на 1000 углеродных атомов; а НМПЭ с молекулярной массой 150-600 является жидкостью и имеет 12-22 связей на 1000 углеродных атомов. Поскольку воскообразный НМПЭ при комнатной температуре не растворим в органических растворителях, то на его основе могут быть приготовлены только дисперсии. Выделенный из жидкой фракции НМПЭ олигомер этилена со среднечисленной молекулярной массой 170- 340, как нами было найдено, является хорошим растворителем инициаторов – органических пероксидов и имеет хорошие транспортные свойства (вязкость 2-20 сП). Он не относится к легковоспламеняющимся жидкостям, так как имеет температуру вспышки более 61oC, и при работе с ним может быть использовано оборудование в обычном исполнении. Наличие в олигомере этилена с молекулярной массой 170-340 значительного количества (15-20 на 1000 углеродных атомов) двойных ненасыщенных связей, а следовательно, и третичных атомов углерода, при которых находится относительно легко отщепляемый атом водорода, создают необходимые предпосылки для вхождения молекулы указанного олигомера НМПЭ в процессе синтеза в структуру высокомолекулярного полиэтилена, являясь при этом, вероятно, агентом передачи цепи. Этим обстоятельством, по-видимому, и объясняются неожиданно низкое содержание экстрагируемых веществ в полиэтилене и его повышенная прозрачность при осуществлении процесса полимеризации по заявляемому способу. Аналогичный технический результат наблюдается и при использовании олигомера этилена, полученного методом термической деструкции высокомолекулярного полиэтилена. Указанный олигомер с молекулярной массой 170-340 также содержит 15-20 двойных связей на 1000 углеродных атомов. Метод термической деструкции позволяет получать олигомер этилена с требуемой молекулярной массой в узком диапазоне, который можно использовать как растворитель пероксидов без дополнительной очистки. Следует отметить, что НМПЭ, получаемый другими методами, в частности методом полимеризации этилена и имеющий молекулярную массу 170-6000, практически не содержит двойных связей и по этой причине не может быть использован в предлагаемом способе. Среднечисленная молекулярная масса олигомера этилена по заявляемому способу, используемого в качестве растворителя пероксидов, находится в пределах 170-340. Олигомер с молекулярной массой менее 170 имеет температуру вспышки менее 61oC и для работы с ним требуется дорогостоящее оборудование во взрывобезопасном исполнении; олигомер с молекулярной массой более 340 по причине высокой вязкости не может использоваться в качестве рабочей жидкости для существующих плунжерных насосов. Заявляемый способ может осуществляться в реакторах как трубчатого, так и автоклавного типа, при этом в качестве пероксидов могут быть использованы органические пероксиды, легко подвергающиеся гомолитическому распаду с образованием свободных радикалов, например, трет-бутилпероксибензоат, ди-трет- бутилпероксид, трет-бутилперокси-З, 5,5, -триметилгексаноат, трет-бутилпероксипивалат или их смеси. При необходимости могут быть использованы агенты передачи цепи – вещества, имеющие легкоотщепляемые атомы или группы атомов, например изопропиловый спирт, пропан, пропилен и др. Получаемый в соответствие с предлагаемым способом полиэтилен может быть использован в производстве пленок различного назначения, в том числе пленок для контакта с пищевыми продуктами и пленок медицинского назначения, а также для изготовления традиционных изделий: труб, выдувных изделий, арматуры и др. Свойства получаемого в соответствии с заявляемым способом полиэтилена определяют по ГОСТ 16337-77 “Полиэтилен высокого давления”; прозрачность пленки – по ASTM D1003. Изобретение иллюстрируется следующими примерами. Пример 1. Опыт проводят на установке полимеризации этилена методом высокого давления, снабженной однозонным обогреваемым трубчатым реактором длиной 25 м и диаметром 6 ![]() Показатель текучести расплава (ПТР), г/10 мин – 2,0 г Прочность при разрыве, Па ![]() Относительное удлинение при разрыве,% – 620 Содержание экстрагируемых веществ,% – 0,26 Прозрачность пленки,% – 69 Пример 2. Процесс проводят в условиях примера 1, но в качестве растворителя трет-бутилпероксибензоата используют олигомер этилена со среднечисленной молекулярной массой 170, числом двойных связей 20 на 1000 углеродных атомов и температурой вспышки 62oC. Условия полимеризации этилена: давление 200 МПа, максимальная температура 215oC. Выход полиэтилена – 4,7 кг/ч. Свойства полиэтилена, полученного по примеру 2 и нижеследующим примерам, приведены в таблице. Пример 3. Процесс проводят в условиях примера 1, но в качестве растворителя трет-бутилпербензоата используют олигомер этилена, полученный методом термической деструкции полиэтилена высокого давления марки 10803-020 (ГОСТ16337-77) при температуре 400oC. Олигомер этилена имеет следующие характеристики: среднечисленная молекулярная масса 340, число двойных связей 15 на 1000 углеродных атомов и температура вспышки 72oC. Процесс полимеризации проводят при давлении 130 МПа и температуре 215oC. Выход полиэтилена составляет 4,1 кг/ч. Пример 4 (контрольный, аналогично прототипу – авт. свид. N 979371). Процесс проводят в условиях примера 1, но в качестве растворителя инициатора используют нейтральную дисперсионную среду, состоящую из уайт-спирита и НМПЭ с молекулярной массой 2000, температурой каплепадения 105oC и числом двойных связей на 1000 углеродных атомов, равным 4. Нейтральную дисперсионную среду НМПЭ в уайт-спирите готовят следующим образом: 200 г НМПЭ загружают в круглодонную колбу, снабженную мешалкой, туда же добавляют 800 г растворителя – уайт-спирита. Колбу с навеской помещают в ультратермостат и разогревают до 95oC. По достижении указанной температуры включают мешалку и перемешивают содержимое колбы до полного растворения НМПЭ в уайт-спирите. Далее отключают ультратермостата и, не выключая мешалки, охлаждают содержимое колбы в течение 2 ч до 35oC. Получают дисперсию НМПЭ с вязкостью 17,2 ![]() ![]() ![]() ![]() Формула изобретения
РИСУНКИ
|
||||||||||||||||||||||||||