Патент на изобретение №2176027
|
||||||||||||||||||||||||||
(54) СИЛОВАЯ УСТАНОВКА И ФРИКЦИОННАЯ ПЕРЕДАЧА
(57) Реферат: Силовая установка относится к двигателестроению, содержит двигатель с выходным валом и движитель, соединенные между собой соосной планетарной передачей с сателлитами, солнечным и коронным колесами. Передача выполнена фрикционной с коническими рабочими поверхностями сателлитов, солнечных и коронных колес, имеющими общую вершину зацепления в точке на оси передачи, расположенной по ходу движителя. Фрикционная передача силовой установки содержит солнечное колесо, упругое коронное колесо и сателлиты, установленные на нем с натягом. Коронное колесо соединено с диском колеса или с корпусом посредством гибкого элемента. Изобретение позволяет обеспечить автоматическое измерение нажимных усилий между колесами передачи пропорционально вариациям силы тяги двигателей и устранить уровень перекоса рабочей поверхности коронного колеса передачи при креплении его к диску колеса или в корпусе. 2 с. и 7 з.п. ф-лы, 6 ил. Изобретения относятся к двигательным установкам воздушного и водного транспорта и могут быть применены в ветряных двигателях, воздуходувках, вентиляторах, компрессорах, в передачах общего машиностроения. Известна силовая установка [1], содержащая поршневой двигатель и воздушный винт, движитель, соединенные между собой понижающим редуктором в виде планетарной соосной зубчатой передачи с коронным и солнечным колесами, сопряженными с шестью сателлитами, оси которых закреплены на водиле, связанном с воздушным винтом. Планетарная соосная передача весьма компактна, но в зубчатом исполнении она конструктивно сложна, нетехнологична, характеризуется значительным уровнем шума, низким КПД, требует хорошей смазки. В настоящей заявке решается задача усовершенствования силовой установки-прототипа путем исполнения редуктора в виде планетарной фрикционной соосной передачи, работоспособность и надежность которой обеспечены автоматическим изменением нажимных усилий между колесами пропорционально вариациям силы тяги двигателей, при этом достигается упрощение конструкции, бесшумность работы, более высокий КПД. Предпочтительное применение – в энергетических установках с высокооборотными турбинами или роторными двигателями. Предложенная задача решается тем, что в силовой установке, содержащей двигатель с выходным валом и движитель, соединенные между собой соосной планетарной передачей с сателлитами, солнечным и коронным колесами, передача выполнена фрикционной с коническими рабочими поверхностями сателлитов, солнечных и коронных колес, и в этой передаче солнечные и коронные колеса имеют общую вершину зацепления в точке на оси передачи, расположенной по ходу движителя. Известны фрикционные планетарные соосные передачи В.А. Чеснокова [2] – [4]. Наиболее проста и эффективна последняя из них, которая содержит солнечное колесо, сателлиты и упругое коронное колесо, которое выполнено неподвижным и сателлиты установлены в нем с натягом. При работе передачи сателлиты генерируют в упругом коронном колесе волны деформации и при жестком неподвижном креплении коронного колеса деформация его по ширине и соответственно контактные напряжения в зацеплении неравномерны, что неблагоприятно для нагрузочной способности передачи. Задачей настоящих изобретений является устранение угловых перекосов рабочей поверхности коронного колеса при креплении его к диску колеса или в корпусе и повышение, таким образом, несущей способности и надежности передачи. Предложенная задача решается тем, что во фрикционной передаче, содержащей солнечное колесо, упругое коронное колесо и сателлиты, установленные в нем с натягом, коронное колесо соединено с диском колеса или с корпусом посредством гибкого элемента. На фиг. 1 изображен осевой разрез силовой установки; на фиг. 2 – разрез А-А, фиг. 1; на фиг. 3 – передача с эвольвентными зубьями; на фиг. 4 – осевой разрез фрикционной передачи; на фиг. 5 – профиль рабочей поверхности с канавками; на фиг. 6 – крепление осей сателлитов посредством гибких рессор. Силовая установка содержит корпус 1, в котором неподвижно установлен быстроходный двигатель, например газотурбинный, с двумя выходными валами 2 и 3 с контрвращением, т.е. с противоположным направлением вращения. На валах установлены или выполнены за одно целое фрикционные солнечные колеса 4, 5, 6, сопряженные с сателлитами 7, 8, 9, которые контактируют с коронными колесами 10, 121, 12, неподвижно соединенными с ободами 13, 14, имеющими лопасти 15, 16 винта или вентилятора. Сателлиты на подшипниках смонтированы на осях 17, 18, 19, которые зафиксированы в консоли 20, жестко соединенной с корпусом 1 и представляющей собой остановленное водило. Колеса 4, 10 и сателлиты 7 выполнены с коническими рабочими поверхностями, имеющими общую вершину зацепления в точке C, расположенной позади по ходу установки. Половина угла конической поверхности колеса 10 выбирается из условия обеспечения усилия нажатия Q между фрикционными колесами, возникающего под действием силы тяги Т движителя 15, исключающего проскальзывание в зацеплениях колес. Например, для стальных колес, работающих со смазкой, рекомендуется соотношение Q = T/sin 20…25Pо, где Pо – суммарное окружное усилие в зацеплении сателлитов и коронного колеса 10. Аналогично выполнена передача 6, 9, 12 второго движителя 16. Вторая передача 5, 8, 11 движителя 15 выполнена цилиндрической, коронное колесо 11 имеет оптимальную упругость и установлено на сателлитах 8 с натягом, обеспечивающим необходимое усилие нажатия. Предварительное усилие нажатия при неработающих движителях обеспечено тарельчатыми пружинами 21, 22, воздействующими на ободы через реборду 23 и радиально-упорный подшипник 24. Между колесом 11 и ободом 27 расположен с зазором гибкий элемент в виде тонкостенного кольца 25, скрепленного одним краем (например, посадкой с натягом) с колесами 11, а другим краем (например, штифтами 26) с ободом. В качестве гибкого элемента может быть использована непосредственно цилиндрическая обечайка 27 обода. Возможно комбинированное исполнение передач (см. фиг. 3), когда на части ширины рабочих колес выполняются эвольвентные зубья 28. В этой версии фрикционные поверхности служат упорами, препятствующими заклиниванию зубьев при разного рода силовых и температурных деформациях. В статическом состоянии фрикционный контакт между колесами и сателлитами обеспечен пружинами 21, 22. При работающих движителях сила тяги Т смещает ободы в осевом направлении вперед по ходу и создает в конических фрикционных зацеплениях дополнительное усилие нажатия. На фиг. 1 изображена силовая установка с задним расположением движителей; подобным образом может быть выполнена установка с передним расположением движителей. Вместо силы тяги движителей могут быть использованы другие силы, например, сила тяжести. Передача содержит ведущий вал 30 с солнечным колесом 31, сателлиты 32, установленные на осях 33, закрепленных в водиле 34; упругое коронное колесо 35, установленное на сателлитах с натягом, ведомый вал 36 с неподвижно установленным на нем диском 37, на периферии которого имеется гибкий элемент 38, расположенный с зазором относительно коронного колеса и скрепленный с ним одним краем (например, посадкой с натягом, резьбой с клеем, пайкой и т.п.). В зазоре между диском и колесом установлено эластичное уплотнение 39, рядом – дренажные отверстия 40 для сброса излишней смазки; на рабочей поверхности колеса целесообразно исполнение мелких (с глубиной ~ 0,2 мм) винтовых канавок 41 для стока смазки. Упругое коронное колесо полезно выполнить, по меньшей мере, из двух коаксиальных элементов, соединенных упругоэластичной связкой 42 (например, герметиком, клеем, резиной, полиуретаном и др.); такое исполнение позволяет увеличить амплитуду волн упругой деформации при работе передачи, уменьшить влияние износа и температурных деформаций. Гибкий элемент 38 обеспечивает податливое крепление коронного колеса к диску 37 (или к ободу на фиг. 1) и свободный без угловых перекосов изгиб коронного колеса на сателлитах. При работе скоростной передачи возможны центробежное сепарирование масляного тумана и избыток смазки на рабочей поверхности коронного колеса, вызывающий повышенное скольжение; дренажные отверстия 40 и канавки 41 устраняют этот неблагоприятный эффект. Уплотнение 39 препятствует загрязнению зазора между упругим компенсатором 38 и коронным колесом. Вариант крепления осей 33 сателлитов 32 к водилу, изображенный на фиг. 6, содержит рамку с упругими плоскими рессорами 43, которая, например, винтами через отверстия 44 соединена с водилом; такое крепление обеспечивает подвижность осей сателлитов в радиальном направлении при достаточной жесткости соединения в других плоскостях. На твердые рабочие поверхности колеса и(или) сателлитов целесообразно нанести относительно мягкое покрытие, например, меди и ее сплавов. Такое покрытие функционирует как пластичная смазка с высокой вязкостью; оно обеспечивает увеличение площади контакта, коэффициента трения и нагрузочной способности передачи. При вращении ведущего вала 30 с солнечным колесом 31 силы трения между солнечным колесом, сателлитами 32 и коронным колесом 35, возникающие вследствие установки последнего с натягом, обеспечивают фрикционное взаимодействие колес и передачу крутящего момента на ведомый вал 36. При этом отсутствие жесткого соединения обода коронного колеса с его диском исключает угловые отклонения образующей рабочей поверхности коронного колеса относительно его диска, чрезмерные циклические напряжения изгиба в местах их углового соединения предупреждает образование усталостных трещин. Таким образом, соединение коронного колеса 35 с его диском 37 посредством гибкого элемента 38 обеспечивает равномерные, без угловых перекосов, упругие волны деформации по ширине коронного колеса, устраняет концентраторы напряжений, повышает надежность и нагрузочную способность передачи. Исполнение коронного колеса по меньшей мере, из двух элементов, соединены упругой связкой 42 повышает гибкость обода колеса, амплитуду волн деформации, снижает чувствительность к износу и перепадам температур. Крепление осей 33 сателлитов к водилу или корпусу посредством плоских рессор 43, толщина которых в несколько раз меньше ширины, позволяет сателлитам легко перемещаться в радиальном направлении и самоустанавливаться под действием нажимных усилий со стороны коронного и солнечного колес. При работе передачи со смазкой на больших окружных скоростях возможно образование гидродинамического клина в зонах фрикционного контакта сателлитов с коронным колесом, снижающего трение и нагрузочную способность; дренажные отверстия 40 и винтовые канавки 41 устраняют этот неблагоприятный эффект. Относительно мягкие, пластичные покрытия, например, сплавов меди или золота, на закаленных рабочих поверхностях колес функционируют как смазка с очень высокой вязкостью, они обеспечивают увеличение площади контакта, коэффициента трения и нагрузочной способности передачи. Источники информации 1. А. М. Лапшин, П. И. Анохин. Авиационный двигатель М-141. – М.: – “Транспорт”, 1976, стр. 44, рис. 27. 2. SU N 191977 F 16 H 13/06, 1967. 3. SU N 284543 F 16 H 13/06, 1970. 4. SU N 355413 F 16 H 13/06, 1972. Формула изобретения
РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 01.04.2004
Извещение опубликовано: 10.12.2004 БИ: 34/2004
|
||||||||||||||||||||||||||