Патент на изобретение №2173454

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2173454 (13) C2
(51) МПК 7
G01N27/18
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 17.05.2011 – прекратил действие

(21), (22) Заявка: 99111538/28, 01.06.1999

(24) Дата начала отсчета срока действия патента:

01.06.1999

(45) Опубликовано: 10.09.2001

(56) Список документов, цитированных в отчете о
поиске:
SU 224880, 10.12.1968. RU 2018812 C1, 30.08.1994. RU 2114422 C1, 27.06.1998. US 4471647, 18.09.1984. EP 0472131 А1, 17.08.1991.

Адрес для переписки:

432011, г.Ульяновск, ул. Гончарова, 48, а/я 9868, ООО Научно-производственная фирма “РОДОС”

(71) Заявитель(и):

ООО Научно-производственная фирма “РОДОС”

(73) Патентообладатель(и):

ООО Научно-производственная фирма “РОДОС”

(54) ТЕРМОКОНДУКТОМЕТРИЧЕСКИЙ ГАЗОВЫЙ ДАТЧИК


(57) Реферат:

Устройство используется в аналитическом приборостроении для измерения концентрации водорода, гелия, фреонов и других газов, коэффициент теплопроводности которых отличается от коэффициента теплопроводности воздуха. Технический результат – снижение трудоемкости, упрощение технологии изготовления, повышение точности измерений. Сущность: термокондуктометрический газовый датчик содержит рабочую камеру, в которой установлены рабочий и сравнительный чувствительные элементы в виде пленочных терморезисторов, выполненных на диэлектрических подложках. Рабочий чувствительный элемент расположен между верхней и нижней стенками рабочей камеры и закреплен на нижней стенке с применением промежуточных вставок, а сравнительный чувствительный элемент расположен под рабочим чувствительным элементом. Между чувствительными элементами, а также между рабочим чувствительным элементом и верхней стенкой рабочей камеры образуются зазоры для доступа анализируемого газа через отверстия, выполненные в стенке рабочей камеры. 1 ил.


Изобретение относится к аналитическому приборостроению, а именно к конструкциям датчиков для измерения концентрации газов в окружающей среде.

Известен термокондуктометрический газовый датчик [1], содержащий основание, теплосток, датчик температуры теплостока в виде пленочного терморезистора, кремниевую подложку со сформированной на ней мембраной, на которой выполнен чувствительный элемент в виде пленочного терморезистора, причем между диэлектрической пластиной и поверхностью теплостока образуется канал для доступа анализируемой газовой смеси.

По высоте канала между чувствительным элементом и теплостоком формируется перепад температур, величина которого зависит от рассеиваемой чувствительным элементом мощности и от результирующего коэффициента теплопроводности газовой смеси, зависящего от концентрации измеряемого газа.

Для реализации данной конструкции необходимо применение технологических процессов полупроводниковой микроэлектроники, включая анизотропное травление кремния, отличающихся сложностью и высокой стоимостью изготовления.

Наиболее близким к заявляемому является термокондуктометрический газовый датчик [2], содержащий рабочую камеру и первый чувствительный элемент в виде пленочного терморезистора, выполненного на верхней поверхности диэлектрической подложки, закрепленной между верхней и нижней стенками рабочей камеры, и второй чувствительный элемент в виде пленочного терморезистора, причем между первым чувствительным элементом и верхней стенкой рабочей камеры образован зазор для доступа анализируемого газа через отверстия, выполненные в стенке рабочей камеры.

В известном датчике в рабочую камеру осуществляется принудительная подача регистрируемого газа. Помимо рабочей камеры в известном датчике выполнена идентичная ей сравнительная камера, причем в каждой из камер выполнены по два идентичных чувствительных элемента. В сравнительную камеру осуществляется принудительная подача чистого газа-носителя. Применение сравнительной камеры необходимо для компенсации влияния изменений температуры окружающей среды.

Чувствительные элементы выполнены на единой подложке, закрепленной одновременно в рабочей и сравнительной камерах. Конфигурация чувствительных элементов выбирается в зависимости от требуемого сопротивления. Чувствительные элементы включены в мостовую схему, при этом при отсутствии в воздухе измеряемой компоненты газа мостовая схема сбалансирована и на ее выходе напряжение равно 0. При поступлении в рабочую камеру регистрируемого газа изменяется теплопередача от рабочего чувствительного элемента к стенкам камеры, в результате чего изменяются его температура и, следовательно, – сопротивление.

Изменение сопротивления рабочего чувствительного элемента приведет к разбалансу моста и появлению выходного сигнала, величина которого зависит от концентрации регистрируемого газа.

К недостаткам датчика следует отнести сложность конструкции, обусловленную необходимостью применения сравнительной камеры и чистого газа-носителя, а также принудительного забора как регистрируемого газа, так и чистого воздуха.

Перечисленные недостатки конструкции прототипа устранены в предлагаемом техническом решении.

Техническим результатом изобретения является снижение трудоемкости, упрощение технологии изготовления, повышение точности измерений.

Поставленная цель достигается тем, что в термокондуктометрическом газовом датчике, содержащем рабочую камеру, первый чувствительный элемент в виде пленочного терморезистора, выполненного на верхней поверхности диэлектрической подложки, закрепленной между верхней и нижней стенками рабочей камеры, и второй чувствительный элемент в виде пленочного терморезистора, причем между первым чувствительным элементом и верхней стенкой рабочей камеры образован зазор для доступа анализируемого газа через отверстия, выполненные в стенке рабочей камеры, первый чувствительный элемент закреплен на нижней стенке рабочей камеры через промежуточные вставки, а второй чувствительный элемент расположен под первым чувствительным элементом и закреплен на нижней стенке рабочей камеры, с образованием зазора между ним и диэлектрической подложкой первого чувствительного элемента.

Отличительные признаки заявляемого датчика по сравнению с прототипом определяются изменением формы конструктивных элементов и их взаимного расположения.

1. Первый чувствительный элемент закреплен на нижней стенке рабочей камеры с помощью вставок с образованием зазора между ним и верхней стенкой рабочей камеры.

2. Второй чувствительный элемент расположен под первым чувствительным элементом и закреплен непосредственно на нижней стенке рабочей камеры, образуя зазор между ним и диэлектрической подложкой первого чувствительного элемента.

Анализ датчиков показал отсутствие конструкций, характеризующихся наличием перечисленных признаков.

Конструкция устройства приведена на чертеже.

Датчик содержит рабочую камеру 1, в которой размещены первый и второй чувствительные элементы 2 и 3, выполненные на основе диэлектрических подложек 4 и 5. Подложка 4 чувствительного элемента 2 закреплена на нижней стенке 6 рабочей камеры 1 с использованием промежуточных вставок 7, а подложка 5 чувствительного элемента 3 установлена под подложкой 4 непосредственно на нижней стенке 6 рабочей камеры 1. Между чувствительным элементом 2 и верхней стенкой 8 (на фиг. вид сверху – не показана) образуется зазор 9 для доступа анализируемого газа, поступающего через отверстия 10, выполненные в верхней стенке 8 рабочей камеры 1.

На подложке 5 выполнены пленочные контакты 11 чувствительного элемента 3, и пленочный контакт 12, к которым подключаются при помощи проволочных перемычек 13 пленочные контакты 14 первого чувствительного элемента 2. К пленочным контактам 11, 12 пайкой или сваркой крепятся проволочные выводы для подключения чувствительных элементов к мостовой схеме и схеме обработки сигнала (на чертеже не показаны).

Крепление подложки 4 к промежуточным вставкам 7 и промежуточных вставок к нижней стенке 6 осуществляется при помощи слоев 16 термостойкого клея с минимальными газовыделениями.

Между подложкой 4 и вторым чувствительным элементом 3 образуется зазор 17.

Чувствительные элементы 2, 3 выполнены в виде пленочных терморезисторов из материалов, обладающих повышенным значением температурного коэффициента сопротивления (Ni, Au, Pt и др.). При этом чувствительный элемент 2 выполняет функции рабочего элемента, а чувствительный элемент 3 – функции сравнительного элемента.

Датчик работает следующим образом.

Работа датчика основана на использовании зависимости коэффициента теплопроводности L измеряемой среды от концентрации регистрируемой компоненты газа.

При поступлении в зазоры 9 и 17 измеряемой газовой смеси изменяются L и соответственно тепловая проводимость G между чувствительными элементами 2 и 3.

Тепловая проводимость G определяется главным образом кондуктивной передачей тепла в канале по газовой среде между чувствительными элементами 2 и 3, которая пропорциональна результирующему коэффициенту теплопроводности L измеряемой газовой смеси. Изменение G фиксируется путем определения изменения перепада температур между рабочим и сравнительным чувствительными элементами.

Исходный перепад температур формируется за счет протекания тока I через рабочий чувствительный элемент (пленочный терморезистор) 2. При этом величина равна:
== 2Ro/G,
где I – величина тока через чувствительный элемент 2;
Rо – сопротивление чувствительного элемента 2 при начальной температуре;
G – тепловая проводимость между рабочим и сравнительным чувствительными элементами 2 и 3.

В исходном состоянии при отсутствии измеряемой компоненты газа мостовая схема сбалансирована и выходное напряжение схемы обработки сигнала равно 0. При поступлении регистрируемого газа в зазоры 9 и 17 изменяется результирующий коэффициент теплопроводности L газовой смеси и, следовательно, изменяется T, в результате чего возникает разбаланс моста U, величина которого зависит от концентрации регистрируемого газа. Величина U усиливается схемой обработки сигнала (на чертеже не показана).

Влияние изменения температуры окружающей среды на величину U сводится к минимуму за счет включения в мостовую схему рабочего и сравнительного чувствительных элементов 2 и 3.

Чувствительность датчика возрастает в случаях когда коэффициент теплопроводности измеряемого газа значительно отличается от коэффициента теплопроводности воздуха (гелий, водород, фреоны, пропан, сернистый газ и др.).

Для изготовления датчика достаточно применения методов тонкопленочной или толстопленочной технологий; которые хорошо освоены на предприятиях электронной и приборостроительной отраслей.

Список использованных источников

2. А.С. СССР N 224880, кл. G 01 N 27/18, опубл. 12.08.68. БИ 26. Термокондуктометрический детектор для анализа газов (прототип).

Формула изобретения


Термокондуктометрический газовый датчик, содержащий рабочую камеру, первый чувствительный элемент в виде пленочного терморезистора, выполненного на верхней поверхности диэлектрической подложки, закрепленной между верхней и нижней стенками рабочей камеры, и второй чувствительный элемент в виде пленочного терморезистора, причем между первым чувствительным элементом и верхней стенкой рабочей камеры образован зазор для доступа анализируемого газа через отверстия, выполненные в стенке рабочей камеры, отличающийся тем, что первый чувствительный элемент закреплен на нижней стенке рабочей камеры через промежуточные вставки, а второй чувствительный элемент расположен под первым чувствительным элементом и закреплен на нижней стенке рабочей камеры с образованием зазора между ним и диэлектрической подложкой первого чувствительного элемента.

РИСУНКИ

Рисунок 1


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 01.06.2002

Номер и год публикации бюллетеня: 32-2003

Извещение опубликовано: 20.11.2003


Categories: BD_2173000-2173999