Патент на изобретение №2172797

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2172797 (13) C1
(51) МПК 7
C25D3/12
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.05.2011 – может прекратить свое действие

(21), (22) Заявка: 2000132772/02, 27.12.2000

(24) Дата начала отсчета срока действия патента:

27.12.2000

(45) Опубликовано: 27.08.2001

(56) Список документов, цитированных в отчете о
поиске:
ЛАЙНЕР B.A. и др. Основы гальваностегии, ч.1. – М.: 1953, с.412 – 490. RU 2089675 С1, 10.09.1997. RU 2061104 С1, 27.05.1996. GB 1541118, 21.02.1979. GB 2175922 A, 10.12.1986.

Адрес для переписки:

107076, Москва, ул. Стромынка, 19, корп. 1, кв.24, В.С.Казанцеву

(71) Заявитель(и):

Шатохин Игорь Михайлович

(72) Автор(ы):

Шатохин И.М.

(73) Патентообладатель(и):

Шатохин Игорь Михайлович

(54) ЭЛЕКТРОЛИТ НИКЕЛИРОВАНИЯ


(57) Реферат:

Изобретение относится к электрохимии, в частности к электролитам для получения никелевых покрытий. Электролит никелирования содержит сернокислый никель, хлористый натрий и борную кислоту, а также согласно изобретению, сульфаминовую кислоту при следующем содержании компонентов, г/л: сернокислый никель – 250-350; сульфаминовая кислота – 40-70; хлористый натрий – 5-15; борная кислота – 15-30, обеспечивается получение качественного мелкозернистого покрытия и снижение издержек производства при его нанесении. 1 табл.


Изобретение относится к электрохимии, в частности к электролитам для получения никелевых износостойких покрытий на рабочих поверхностях кристаллизаторов, применяющихся в установках непрерывной разливки стали и других металлов.

Из современного уровня техники известно большое разнообразие электролитов и режимов нанесения никелевых покрытий, базирующихся на предложенном в 1913 г. проф. Висконтского университета Уотсом электролите, состоящим из трех основных компонентов сульфата никеля, хлорида никеля (или хлорида натрия) и борной кислоты см. В.А.Лайнер и Н.Т.Кудрявцев “Основы альваностегии”, часть 1, М., 1953, с. 412-490. В частности известны сульфаминовые электролиты, предназначенные для получения толстых пластичных никелевых покрытий, имеющих малые внутренние напряжения, см. Н.В.Коровин, “Новые покрытия и электролиты в гальванотехнике”, Металлургия, М., 1962 г., с. 19.

Недостатком этих электролитов является высокая стоимость вследствие того, что основным компонентом этих электролитов является дефицитный сульфамат никеля, получаемый при добавлении сульфаминовой кислоты к карбонату никеля. Кроме того, при осаждении покрытия, реально достигаемая плотность тока ограничена 15 а/дм2, что не позволяет интенсифицировать процесс нанесения покрытий и использовать эти электролиты для серийного изготовления кристаллизаторов с гальванопокрытиями рабочих поверхностей.

За прототип изобретения авторами приняты сульфатные электролиты, содержащие сернокислый никель, хлористый натрий или хлористый никель и борную кислоту, см. В.А.Лайнер и Н.Т.Кудрявцев “Основы гальваностегии”, часть 1, М., 1953 г., с. 412-490.

Недостатком электролита по прототипу является низкие допустимые плотности тока (1-2,5 а/дм2), при этом никелевые покрытия из этих электролитов характеризуются очень высокими внутренними напряжениями, что приводит к отслаиванию покрытий от основы и их растрескиванию. Вследствие этого, эти электролиты используются только для получения тонких защитно-декоративных покрытий толщиной 5-100 мкм.

Технической задачей, решаемой предложенным изобретением, является снижение стоимости электролита с обеспечением высокопроизводительного нанесения на основу (рабочие поверхности кристаллизаторов) толстых (свыше 1 мм) малонапряженных, мелкозернистых и плотных и стойких к износу никелевых покрытий. В предложенном электролите это обеспечивается за счет, малого омического сопротивления и возможности применения повышенных (не менее чем в 9 раз по сравнению с сульфатными электролитами) плотностями тока, а также применением дешевых и недефицитных компонентов электролита.

Указанная задача решена за счет того, что электролит никелирования, содержащий сернокислый никель, хлористый натрий и борную кислоту, согласно изобретению электролит дополнительно содержит сульфаминовую кислоту при следующем содержании компонентов, г/л: сернокислый никель – 250-350; сульфаминовая кислота – 40-70; хлористый натрий – 5-15; борная кислота – 15-30.

Техническим результатом, который может быть получен при использовании предложенного электролита является обеспечение возможности высокопроизводительного получения толстых (более 1 мм) и малонапряженных никелевых покрытий на рабочих поверхностях кристаллизаторов. При этом, за счет интенсификации процесса и применения более дешевых компонентов снижаются издержки производства при нанесении покрытий.

Приготовление электролита осуществляют путем смешения расчетных количеств компонентов, при следующим их соотношении, г/л: сернокислый никель – 250-350; сульфаминовая кислота – 40-70; хлористый натрий – 5-15; борная кислота – 15-30.

Проведенными исследованиями установлено, что вышеприведенный качественный и количественный состав электролита – оптимален для получения толстых малонапряженных никелевых покрытий. При этом, основной компонент электролита – сернокислый никель относительно дешев и менее дефицитен чем сульфамат никеля. Выбранный диапазон значений концентрации сернокислого никеля – 250-350 г/л позволяет обеспечить интенсивный рост слоя покрытия в процессе его нанесения. При меньшей (чем указано) концентрации – снижается скорость образования покрытия, при больших значениях – снижается растворимость компонента, что приводит к его перерасходу. В таблице 1 показано влияние концентрации сернокислого никеля на допустимую плотность тока и скорость образования слоя никелевого покрытия.

Наличие в составе электролита сульфаминовой кислоты в количестве 40-70 г/л позволяет интенсифицировать процесс нанесения покрытия за счет повышения допустимой плотности тока – до 35,0 А/дм2. При содержании кислоты менее 40 г/л – снижается стабильность электролита, возникают трудности с поддержанием заданного значения pн, увеличивается скорость защелачивания электролита и снижается качество покрытия. При содержании кислоты, более чем 70 г/л – повышается агрессивность электролита и резко увеличивается растворение основы – покрываемого изделия.

Назначение хлористого натрия и борной кислоты тоже самое, что и в прототипе, причем они взяты в тех же соотношениях. Хлористый натрий используется для облегчения растворения никелевых анодов и для их защиты от пассивирования. Борная кислота используется для поддержания постоянной кислотности электролита.

Для получения качественных мелкозернистых покрытий к основному компоненту – сернокислому никелю добавляют сульфаминовую кислоту, которую растворяют при температуре 60-70oC и вводят остальные компоненты.

После полного растворения всех компонентов, анализируют пробу электролита. При положительном анализе, электролит в ванне прорабатывают током при катодной плотности 0,5-0,6 А/дм2. Аноды никелевые, в чехлах их хлорвиниловой ткани. Катоды – чистые стальные листы. Электрохимическую проработку электролита ведут для осаждения таких примесей как Cu, Fe. Необходимо отметить особую чувствительность к посторонним примесям никелевых электролитов в сравнении с другими электролитами, используемыми для осаждения металлических покрытий.

Допустимое содержание железа в электролите должно быть не более 0,2 г/л, меди – не более 0,02 г/л. Превышение этих пределов негативно сказывается на качестве покрытий. Осадки получаются грубыми, шероховатыми, с темными полосами, пористые, хрупкие, склонные к отслаиванию.

Свежеприготовленный электролит прорабатывают током при Дк = 0,2-0,6 А/дм2, где Дк – катодная плотность тока. Проработку ведут в течение 6-7 часов до появления серого никелевого покрытия на стальных катодах.

Следует отметить, что температура электролита оказывает существенное влияние на скорость образования покрытия. Исследованиями установлено, что оптимальный диапазон температур находится в интервале 45-70o.

В результате промышленных испытаний установлено, что наибольший эффект от использования предложенного электролита реализуется при нанесении толстых никелевых покрытий толщиной порядка 1 мм и выше с применением высоких плотностей тока и организации циркуляции и фильтрации электролита в ванне. Соотношение ингредиентов и диапазоны значений их концентраций в электролите обеспечивает интенсивное наращивание толстого и плотного слоя мелкозернистого малонапряженного покрытия, допуская при этом применение тока повышенной плотности – до 35,0 А/дм2. Кроме того, значительно снижается стоимость покрытия, поскольку основной компонент электролита – сернокислый никель относительно дешев и недефицитен.

Формула изобретения


Электролит никелирования, содержащий сернокислый никель, хлористый натрий и борную кислоту, отличающийся тем, что электролит дополнительно содержит сульфаминовую кислоту при следующем содержании компонентов, г/л:
Cернокислый никель – 250 – 350
Сульфаминовая кислота – 40 – 70
Хлористый натрий – 5 – 15
Борная кислота – 15 – 30р

РИСУНКИ

Рисунок 1

Categories: BD_2172000-2172999