Патент на изобретение №2169787
|
||||||||||||||||||||||||||
(54) СПОСОБ ПОЛУЧЕНИЯ МЕЛЮЩИХ ШАРОВ ИЗ БЕЛОГО ЛЕГИРОВАННОГО ЧУГУНА
(57) Реферат: Изобретение относится к металлургии, в частности к способу получения деталей в виде мелющих шаров из белого легированного чугуна, которые могут использоваться в качестве быстроизнашивающихся деталей, например мелющих тел для шаровых мельниц. В предлагаемом способе дополнительно проводят легирование и модифицирование чугуна. Легирование чугуна на заданный состав осуществляют в электропечи при его выплавке. Модифицирование осуществляют ферротитаном при сливе в ковш расплава, нагретого в печи до 1450 – 1470oC, круглую литую заготовку получают отливкой на машине непрерывного литья, нагревают ее до 950 – 1050oC и прокатывают на шары на шаропрокатном стане поперечно-винтовой прокатки, полученные шары подвергают немедленной воздушной закалке с температуры прокатки путем обдува и воздухом, а затем подвергают их высокому отпуску путем их нагрева до 680 -700oC и выдержке при ней 4 – 5 ч с последующим охлаждением на воздухе, при этом чугун получают следующего химического состава, мас. % : углерод – 2,2 – 3,5; кремний – 0,3 – 0,6; хром – 6,0 – 12,0; марганец – 4,0 – 6,0; молибден – 0,5 – 0,8; бор – 0,1 – 0,3; титан – 0,1 – 0,3; никель – 0,3 – 0,6; фосфор – 0,02 – 0,1; сера – 0,02 – 0,07; железо – остальное. Способ позволяет получать мелющие шары с твердостью, обеспечивающей высокую их износостойкость, и высокими вязкостью и пластичностью, обеспечивающими высокую их ударостойкость при эксплуатации. Изобретение относится к металлургии, в частности к способу получения деталей в виде мелющих шаров из белого легированного чугуна, которые могут использоваться в качестве быстроизнашивающихся деталей, например мелющих тел для шаровых мельниц. Известен способ получения деталей из белого износостойкого чугуна [1], включающий выплавку чугуна, его легирование до нужного химсостава, модифицирование силикобарием при сливе в ковш нагретого в печи до 1400-1480oC расплава, получение отливки заливкой чугуна заданного состава в песчаную или металлическую форму, очистку, обрубку и термическую обработку, осуществляемую в виде высокотемпературной нормализации с нагревом до 1050-1100oC и выдержкой при ней 2-3 ч и последующего высокотемпературного отпуска с нагревом до 690-710oC, выдержкой при ней 6-7 ч и охлаждением с печью до 400oC, а затем на воздухе, при этом после модифицирования получают чугун следующего состава, мас.%: Углерод – 2,4-4,0 Кремний – 0,5-1,5 Марганец – 2,0-4,0 Никель – 2,0-4,0 Хром – 8,0-12,0 Молибден – 0,5-0,8 Бор – 0,1-0,3 Барий – 0,005-0,01 Фосфор – 0,02-0,1 Сера – 0,02-0,07 Железо – Остальное Указанные детали могут быть использованы в качестве мелющих шаров в шаровых мельницах. Недостатком способа является невысокая ударостойкость шаров, что снижает их эксплуатационную стойкость при использовании в шаровых мельницах. Известен способ получения отливок и деталей из высоколегированного белого чугуна с высокой твердостью и износостойкостью [2; 3, с.336-434]. Недостатками способа являются: использование повышенного количества в качестве легирующих добавок дорогих и дефицитных элементов хрома, никеля, молибдена, ванадия, титана, меди, алюминия и других, что увеличивает стоимость отливок; повышенная хрупкость отливок и деталей; низкие технологические свойства чугуна, в частности низкая жидкотекучесть, высокая склонность к усадке и образованию трещин при литье и термической обработке, плохая обрабатываемость резанием, что затрудняет получение качественных отливок и деталей. Наиболее близким по технической сущности и достигаемому эффекту является способ получения чугунных шаров [4], заключающийся в выплавке чугуна, имеющего химический состав заэвтектического чугуна, получении круглой литой заготовки из белого литейного чугуна, нагревании ее в нагревательной печи и горячей пластической деформации ее ковкой или штамповкой при 900 – 1125oC. При этом образуются шары из белого литейного чугуна, имеющего структуру, в которой эвтектический цементит раздроблен и располагается равномерно в виде концентрических сфер в перлитной матрице шаров, что придает им высокую вязкость. Для придания необходимой твердости шарам их закаливают с последующим отпуском при температуре ниже Ac3 или отжигают при 150 – 250oC при следующем соотношении в чугуне компонентов, мас.%: Углерод – 2,74-3,15 Кремний – 0,58-0,68 Марганец – 0,59-0,88 Хром – 1,07-1,65 Молибден – 0,31-0,98 Ванадий – 0,003-0,007 Никель – 0,4-1,66 Алюминий – 0,01-0,043 Титан – 0,005-0,05 Недостатками указанного способа являются использование дорогостоящих легирующих элементов никеля, ванадия, молибдена, алюминия, недостаточно высокая твердость, пластичность и ударостойкость шаров при использовании их в мельницах большого диаметра и при размоле материалов, твердость которых равна или превышает твердость образующихся в их структуре карбидов. Задачей изобретения является получение простым способом мелющих шаров из белого легированного чугуна с твердостью, обеспечивающей высокую их износостойкость, и высокой вязкостью и пластичностью, обеспечивающих высокую их ударостойкость при эксплуатации. Для решения указанной задачи дополнительно проводят легирование и модифицирование чугуна, причем легирование чугуна на заданный состав осуществляют в электропечи при его выплавке, модифицирование осуществляют ферротитаном при сливе в ковш расплава, нагретого в печи до 1450-1470oC, круглую литую заготовку нагревают до 950-1050oC, прокатывают на шаропрокатном стане поперечно-винтовой прокатки, прокатанные шары с температуры прокатки подвергают сразу же закалке обдувкой воздухом, а затем высокому отпуску при 680-700oC, выдержке при ней 4-5 ч и охлаждению на воздухе при следующем соотношении в чугуне компонентов, мас.%: Углерод – 2,2-3,5 Кремний – 0,3-0,6 Хром – 6,0-12,0 Марганец – 4,0-6,0 Молибден – 0,5-0,8 Бор – 0,1-0,3 Никель – 0,3-0,6 Титан – 0,1-0,3 Фосфор – 0,02-0,1 Сера – 0,02-0,07 Железо – Остальное В результате получают мелющие шары из белого легированного чугуна, микроструктура которых состоит из раздробленных пластической деформацией при прокатке мелких эвтектических карбидов и образовавшихся в результате закалки и отпуска очень мелких вторичных карбидов, равномерно распределенных в образовавшейся при этом аустенитно-трооститной металлической матрице, легированной хромом, марганцем, никелем, бором, титаном. Такая микроструктура чугуна обеспечивает одновременно его очень высокую твердость и износостойкость, прочность, пластичность и вязкость, в результате чего полученные из него мелющие шары обладают высокой эксплуатационной стойкостью. Модифицирование чугуна ферротитаном способствует измельчению микроструктуры литой заготовки и образованию большого количества в ней карбидов. Применение закалки обдувкой воздухом и после нее высокотемпературного отпуска способствует снижению внутренних напряжений в шарах, получению высокой их прочности, вязкости и пластичности вследствие образования вязкой аустенитно-трооститной металлической матрицы и высокой их твердости и износостойкости вследствие насыщения матрицы эвтектическими и вторичными карбидами. Такой способ получения мелющих шаров из белого легированного чугуна выбран на основе проведенных исследований влияния параметров различных этапов технологического процесса и состава чугуна на их микроструктуру и свойства и выбора их оптимальных значений, обеспечивающих наилучшие показатели свойств. Применение непрерывного литья обеспечивает получение простым высокопроизводительным и дешевым способом цилиндрической заготовки с плотной структурой. Применение поперечно-винтовой горячей прокатки на шаропрокатном стане обеспечивает получение простым высокопроизводительным способом сферических тел в виде шаров, при этом пластическая деформация литой заготовки приводит к дроблению сплошной сетки образовавшихся в ней при литье эвтектических карбидов и равномерному распределению их в металлической матрице шаров. Легирование чугуна целесообразно проводить в электропечи при его выплавке, так как при этом обеспечивается наилучшее усвоение легирующих элементов из вводимых легирующих добавок и получение точного химического состава чугуна. Содержание в белом износостойком чугуне 2,2 – 3,5% углерода способствует образованию в нем карбидов, что повышает его твердость и износостойкость. Повышение содержания углерода выше указанного верхнего предела способствует образованию в структуре чугуна сплошной сетки из эвтектических карбидов, что приводит к повышению хрупкости и снижению вязкости чугуна. Снижение содержания углерода в белом чугуне ниже нижнего предела сильно снижает количество карбидов в нем, что снижает его твердость и износостойкость. Содержание в чугуне 0,3 – 0,6% кремния повышает его технологические свойства – увеличивает жидкотекучесть, снижает склонность к усадке, что повышает качество и свойства отливок. Содержание в белом износостойком чугуне 4 – 6% марганца повышает его пластичность и вязкость вследствие образования в его микроструктуре аустенита, который при прокатке шаров обеспечивает необходимую пластичность чугуна, а после их отпуска превращается в троостит и повышает их вязкость. Снижение содержания в чугуне марганца ниже нижнего указанного уровня снижает его положительное влияние на структуру и свойства белого чугуна. Повышение его содержания выше верхнего указанного предела приводит к образованию в его структуре большого количества стабильного аустенита, не превращающегося в троостит при закалке и отпуске, что приводит к снижению твердости и износостойкости шаров. Содержание в белом износостойком чугуне 6 – 12% хрома обеспечивает его высокую твердость и износостойкость вследствие образования в его микроструктуре большого количества очень твердых карбидов (Cr, Fe)7C3 (Cr, Fe)23C6. При снижении содержания хрома ниже нижнего указанного уровня в его микроструктуре образуются лишь карбиды в виде легированного цементита (Cr, Fe)3C, существенно снижающие твердость и износостойкость белого легированного чугуна. Повышение содержания хрома выше верхнего указанного предела не приводит к существенному повышению твердости и износостойкости чугуна, но увеличивает стоимость шаров. Содержание 0.1 – 0.3% бора в белом износостойком чугуне повышает свойства шаров, так как он образует очень твердые и износостойкие высокодисперсные борокарбонитриды, значительно увеличивающие твердость и износостойкость чугуна. Кроме того, бор способствует измельчению литой структуры чугуна, что повышает его свойства. При снижении содержания бора ниже нижнего указанного предела резко снижается его положительное влияние на структуру и свойства чугуна, а при повышении его содержания выше верхнего указанного предела он способствует увеличению хрупкости чугуна, что снижает эксплуатационные свойства шаров. Содержание в белом легированном чугуне 0,02 – 0,07% серы и 0,02 – 0,1% фосфора соответствует содержанию их в железоуглеродистой шихте в виде примеси и не оказывает влияния на свойства шаров. Содержание в белом чугуне 0,1 – 0,3% титана достигается при модифицировании, влияние которого на структуру описано выше. Содержание в белом легированном чугуне 0,3-0,6% никеля способствует повышению прокаливаемости шаров при их закалке, что обеспечивает получение равномерной твердости по всему их объему и повышению их эксплуатационной стойкости. Воздушная закалка шаров сразу же после прокатки обдувкой их воздухом обеспечивает повышение их твердости и износостойкости вследствие мартенситного превращения аустенита. Сохраняющееся при этом небольшое количество остаточного аустенита способствует повышению вязкости чугуна и ударостойкости шаров. Она возможна благодаря принятому содержанию в чугуне марганца и никеля. Высокотемпературный отпуск шаров из белого легированного чугуна после их воздушной закалки обеспечивает повышение их эксплуатационной стойкости. Это происходит за счет снятия внутренних напряжений, образовавшихся в результате пластической деформации и закалки, и получения аустенитно-трооститной металлической матрицы в шарах и равномерного насыщения ее очень мелкими вторичными карбидами, образующимися при отпуске. Снижение температуры нагрева и времени выдержки при отпуске шаров ниже нижних указанных их пределов не обеспечивает повышения их эксплуатационных свойств, так как не способствует полному снятию внутренних напряжений и полным структурным превращениям, что повышает хрупкость чугуна, а повышение их выше верхних указанных пределов не оказывает существенного положительного влияния на качество шаров, но повышает их стоимость. Технический результат, получаемый при осуществлении изобретений, заключается в достижении высокой твердости и износостойкости шаров наряду с высокой вязкостью и невысокой их стоимостью. Это достигается получением в их микроструктуре аустенитно-трооститной металлической матрицы, насыщенной большим количеством мелких равномерно распределенных в ней очень твердых карбидов (Fe, Cr)7C3, (Cr, Fe)3C и (Cr, Fe)23C6. Мелющие шары, полученные таким способом, обладают высокой износостойкостью и ударостойкостью, что обеспечивает их высокую эксплуатационную стойкость. Способ может быть осуществлен с использованием следующих технических приемов. Плавку чугуна с одновременным его легированием осуществляют в электропечи, а его модифицирование – в разливочных ковшах при сливе в них расплава из печи. Круглые литые заготовки получают путем непрерывной разливки чугуна на машинах непрерывного литья. Прокатку шаров осуществляют на стане поперечно-винтовой прокатки из литого цилиндрического прутка. Прокатанные шары подвергают немедленной закалке с температуры прокатки, а затем высокотемпературному отпуску в нагревательной печи. Указанные технические средства и технологические приемы обеспечивают получение высококачественных шаров с заявленными свойствами. Пример. B плавильной электропечи расплавляли железоуглеродистые шихтовые материалы и получали легированный чугун. После нагрева расплава в печи до 1465oC его сливали в разливочный ковш, в который предварительно засыпали дробленый ферротитан, что обеспечивало после модифицирования следующее содержание в чугуне элементов, мас.%: Углерод – 3,3 Кремний – 0,42 Марганец – 5,31 Хром – 10,44 Никель – 0,48 Бор – 0,19 Фосфор – 0,062 Сера – 0,033 Титан – 0,17 Железо – Остальное. Из чугуна указанного состава на горизонтальной машине непрерывного литья получали отливки заготовок из белого легированного чугуна длиной 2,5 м, диаметром 40 мм. Полученные отливки заготовок подвергали нагреву в термической нагревательной печи до 1030oC и затем подвергали их прокатке на стане поперечно-винтовой прокатки при 990oC и получали шары диаметром 41 мм. Выходящие из прокатного стана шары подвергали закалке с температуры прокатки обдувкой их воздухом. Твердость шаров после закалки составляла HRC60. Твердость полученных шаров в закаленном состоянии выше прототипа на 13%. Шары после закалки содержали в микроструктуре мартенсит, что снижало их ударостойкость. После закалки шары подвергали высокотемпературному отпуску в камерной термической печи путем нагрева их до 690oC и выдержки при ней 4,5 ч, после чего они извлекались из печи и охлаждались на воздухе. Твердость шаров после высокотемпературного отпуска составила HRC65, что выше прототипа на 22,6%. Это достигалось путем насыщения микроструктуры чугуна шаров вторичными карбидами. Проведенные испытания на машине трения показали, что относительная абразивная износостойкость заявленных шаров выше прототипа на 22%. Испытания на раздавливание на прессе показали усилие раздавливания шаров 99,4 т, что выше, чем у прототипа, на 37%. Стоимость заявленных шаров ниже стоимости прототипа, так как при этом не используются дорогостоящие легирующие элементы и применяется простой способ их изготовления. Получение шаров из белого легированного чугуна заявленным способом обеспечивает высокую их твердость, износостойкость, вязкость, эксплуатационную стойкость и невысокую стоимость. Источники информации 1. Патент РФ N 2113495, М. кл. C 21 B 11/10, C 21 C 1/08, C 22 G 37/00 – 1998 г. БИ N 17. 2. ГОСТ 7769-82, Чугун легированный для отливок со специальными свойствами. Марки. – М.: Издательство стандартов, 1987 г. – 23 с. 3. Чугун. Справочник/ Под ред. А.Д.Шермана, А.А.Жукова/ – М.: Металлургия, 1991 г. – 576 с. 4. Патент США N 3844844, публикация 29 октября 1974 г., том 927, N 5.5 Формула изобретения
Углерод – 2,2 – 3,5 Кремний – 0,3 – 0,6 Хром – 6,0 – 12,0 Марганец – 4,0 – 6,0 Молибден – 0,5 – 0,8 Бор – 0,1 – 0,3 Титан – 0,1 – 0,3 Никель – 0,3 – 0,6 Фосфор – 0,02 – 0,1 Сера – 0,02 – 0,07 Железо – Остальное MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 16.06.2001
Номер и год публикации бюллетеня: 34-2002
Извещение опубликовано: 10.12.2002
|
||||||||||||||||||||||||||