Патент на изобретение №2169443

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2169443 (13) C1
(51) МПК 7
H05H1/24, H05H1/26, H05H1/48
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.05.2011 – прекратил действие

(21), (22) Заявка: 99126610/06, 15.12.1999

(24) Дата начала отсчета срока действия патента:

15.12.1999

(43) Дата публикации заявки: 20.06.2001

(45) Опубликовано: 20.06.2001

(56) Список документов, цитированных в отчете о
поиске:
ГАЙСИН Ф.М. и др. Разряд в газе между струей жидкости и твердым электродом. Тезисы докладов научно-технической конференции “Проблемы и прикладные вопросы физики”. -Саранск, МГПИ, 1993 с.34. SU 1088086 А, 23.04.1984. RU 2055449 С1, 27.02.1996. RU 94000646 А1, 20.09.1995. RU 94005971 A1, 20.10.1995. GB 1562201 A, 05.03.1980.

Адрес для переписки:

423810, Татарстан, г. Набережные Челны, пр. Мира, 68/19, КамПИ, ПИО

(71) Заявитель(и):

Камский политехнический институт

(72) Автор(ы):

Тазмеев Х.К.,
Тазмеев Б.Х.

(73) Патентообладатель(и):

Камский политехнический институт

(54) СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОЛИТНОГО ЭЛЕКТРИЧЕСКОГО РАЗРЯДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ


(57) Реферат:

Изобретение относится к способам получения, исследования и применения низкотемпературной плазмы и может быть применено в плазмохимии, плазменных технологиях обработки материалов и плазменной технике, в частности в плазмохимических реакторах. Технический результат – увеличение активной рабочей зоны разряда путем увеличения его длины. В способе получения электролитного электрического разряда, заключающемся в зажигании разряда между электролитным катодом и твердотельным анодом, поступление электролита в разрядную область осуществляется через пористый диэлектрик, а сам электролит готовится из водных растворов солей щелочных металлов и водных растворов щелочей с массовой концентрацией 1 – 30 кг/м3. В устройстве для получения электролитного электрического разряда, содержащем твердотельный токоподвод и электролит в качестве катода, твердотельный анод и гидросистему для циркуляции электролита, катод снабжен диэлектрическим пористым телом и установлен так, что между токоподводом и пористым телом образована полость для пропускания электролита, а твердотельный анод выполнен в виде кольца и установлен напротив пористого тела катода так чтобы плоскость кольца была параллельна наружной плоскости пористого тела, при этом кольцо-анод со стороны катода и снаружи закрыто изолятором. 2 с.п.ф-лы, 1 ил.


Изобретение относится к способам получения, исследования и применения низкотемпературной плазмы и может быть применено в плазмохимии, плазменных технологиях обработки материалов и плазменной технике, в частности в плазмохимических реакторах.

Известны способы получения электролитного разряда между жидким катодом и твердотельным анодом, когда жидкий катод либо наливается в электролитическую ванну [1], либо подается в виде струи [2].

Известен способ получения электролитного разряда, когда оба электрода (и катод, и анод) являются жидкими и текут по поверхностям твердотельных токоподводов [3].

Недостаток известных способов заключается в том, что с помощью этих способов невозможно получить разряд при больших межэлектродных расстояниях, т. е. невозможно увеличить длину разрядного канала выше определенного предела, который составляет порядка 20 мм и практически не зависит от состава электролита. Поэтому эти способы имеют ограниченные технологические и иные возможности практического применения.

Известен способ получения электролитного электрического разряда, заключающийся в зажигании разряда внутри диэлектрической трубки, нижний конец которой касается электролита, налитого в электролитическую ванну, а вблизи открытого верхнего конца устанавливается твердотельный анод [4]. При этом пары электролита поднимаются в вертикальном направлении внутри трубки и это позволяет поддерживать разряд при значительно больших (больше 20 мм) межэлектродных расстояниях.

Недостатки этого известного способа заключаются в следующем: отсутствует свободный доступ в разрядную область; разряд реализуется только в вертикальном направлении, т.е. разряд реализуется при одном единственном варианте взаимного расположения электродов, а именно когда жидкий катод находится ниже твердотельного анода. Поэтому этот способ, как и другие известные способы, имеет ограниченные технологические и иные возможности практического применения.

Прототипом устройства для осуществления способа выбрано устройство, содержащее твердотельный токоподвод и электролит в качестве катода, твердотельный анод и гидросистему для циркуляции электролита [2].

Изобретение направлено на расширение технологических возможностей применения за счет увеличения активной рабочей зоны разряда путем увеличения его длины.

Это достигается тем, что в способе получения электролитного электрического разряда, заключающегося в зажигании разряда между электролитным катодом и твердотельным анодом, поступление электролита в разрядную область осуществляется через пористый диэлектрик, а сам электролит готовится из водных растворов солей щелочных металлов и водных растворов щелочей с массовой концентрацией от 1 до 30 кг/м3.

А в устройстве для получения электролитного электрического разряда, содержащем твердотельный токоподвод и электролит в качестве катода, твердотельный анод и гидросистему для циркуляции электролита, катод снабжен диэлектрическим пористым телом и токоподвод и пористое тело установлены так, что между ними образована полость для пропускания электролита, а твердотельный анод выполнен в виде кольца и установлен напротив пористого тела катода, так чтобы плоскость кольца была параллельна наружной плоскости пористого тела, при этом кольцо со стороны катода и снаружи закрыто изолятором.

На чертеже представлено устройство для осуществления способа.

Устройство для реализации способа состоит из токоподвода 1, электролитного катода 2, диэлектрического пористого тела 3, твердотельного анода 4, выполненного в виде кольца, изолятора 5, гидросистемы 6, которая обеспечивает циркуляцию электролита. Токоподвод 1 и анод 4 подключены к клеммам источника питания 7 через балластный резистор 8. Токоподвод 1 и пористое тело 3 образуют единый катодный узел с полостью для протекания электролита 2. Катодный узел и анод могут располагаться в любом положении друг относительно друга, в том числе могут располагаться горизонтально, как показано на фигуре 1. Катодный узел может находиться над анодом либо, наоборот, анод может находиться над катодным узлом, и возможны любые другие варианты их взаимного расположения. При этом кольцо- анод 4 всегда устанавливается напротив пористого тела 3 так, чтобы плоскость кольца-анода 4 была параллельна наружной рабочей поверхности 9 пористого тела 3.

Способ осуществляется следующим образом. Через полость между токоподводом 1 и пористым телом 3 пропускается поток электролита 2 таким образом, чтобы часть электролита, смачивая пористое тело 3, поступала на его рабочую поверхность 9. После этого с помощью известных способов, например взрывом тонкой медной проволоки, зажигается разряд 10 между рабочей поверхностью 9 пористого тела 3 катодного узла и анодом 4. Изолятор 5 предотвращает блуждание анодных пятен разряда по наружной поверхности анода и тем самым способствует стабилизации разряда.

Электролит на рабочей поверхности 9 пористого тела 3 под действием потока энергии, поступающего от плазмы разряда, кипит и испаряется. Интенсивность этого процесса зависит от тока (от мощности) разряда. При заданном токе, чтобы поддерживать пористое тело в пропитанном электролитом состоянии, на рабочую поверхность пористого тела электролит необходимо подавать в количестве, немного превышающем или в точности таком же, которое испаряется с этой поверхности. При этом условии кипение и испарение происходят внутри пор поверхностного слоя пористого тела и пары электролита, выходя из пор под давлением, образуют поток, направленный в сторону разрядной области. Это способствует поддержанию электрического разряда при больших межэлектродных расстояниях l, т.е. способствует увеличению длины разрядного канала электрического разряда.

Положительный эффект от применения пористого тела существенно увеличивается, если в качестве электролита использовать жидкости, в химическом составе которых имеются легкоионизируемые элементы, например щелочные металлы: натрий, калий и другие. Такие электролиты можно приготовить из водных растворов солей щелочных металлов и водных растворов щелочей.

Экспериментальные исследования показали, когда в химическом составе электролита отсутствуют легкоионизируемые элементы, максимальное значение l составляет 45-50 мм. Это примерно в 2,5 раза больше, чем при зажигании разряда по известному способу [1]. В случае использования в качестве электролита водного раствора КОН с массовой концентрацией 2 кг/м3 длина разрядного канала (расстояние l) достигала до 170 мм, а в случае использования водного раствора NaCl с массовой концентрацией 5 кг/м3 разряд поддерживался при межэлектродном расстоянии 220 мм. Это расстояние более чем в 4 раза больше, чем в случае использования солей нещелочных металлов с той же концентрацией. Таким образом, подача электролита в разрядную область через пористое диэлектрическое тело катодного узла позволяет увеличить длину разрядного канала. Ток в экспериментах менялся в пределах от 3 до 5 А. Разряд горел в вертикальном направлении, когда катодный узел располагался внизу, а металлический анод наверху. Длина разрядного канала существенно возрастает и при других расположениях электродов. Например, при горизонтальном расположении электродов друг относительно друга (как показано на чертеже) в случае использования в качестве электролита водного раствора NaCl с массовой концентрацией 5 кг/м3 длина разрядного канала (расстояние l) достигала до 140 мм. Таким образом, использование в качестве электролита водных растворов щелочей и солей щелочных металлов позволяет получить электролитный разряд, горящий в открытой атмосфере (без стабилизации стенкой), при межэлектродных расстояниях, в несколько раз превышающих максимальное межэлектродное расстояние при других известных способах получения открытого разряда.

При концентрациях менее 1 кг/м3 положительный эффект от использования электролита из растворов солей щелочных металлов и щелочей получается незначительным. В этом случае разрядный канал имеет примерно такую же длину (45 – 50 мм), как и при использовании электролита из растворов нещелочных металлов.

При больших концентрациях плотность тока на катоде возрастает, что приводит к интенсификации испарения электролита с поверхности пористого тела катода. Вследствие этого при концентрациях электролита более 30 кг/м3 пористое тело быстро высыхает и разряд гаснет. Чтобы разряд горел устойчиво и непрерывно и чтобы при этом межэлектродное расстояние было больше, чем при других известных способах получения открытого разряда, необходимо готовить электролит с массовой концентрацией от 1 до 30 кг/м3.

Источники информации
1. Гайсин Ф. М. , Сон Э.Е., Шакиров Ю.И. Объемный разряд в парогазовой среде между твердым и жидким электродами. М. Изд-во ВЗПИ. 1990. См. стр. 82-85.

4. А. с. N 1088086 (СССР). Гайсин Ф.М., Гизатуллина Ф.А., Даутов Г.Ю. Устройство для получения тлеющего разряда при атмосферном давлении, 1983.

Формула изобретения


1. Способ получения электролитного электрического разряда, заключающийся в зажигании разряда между электролитным катодом и твердотельным анодом, отличающийся тем, что электролит подают в разрядную область через пористое тело из диэлектрика, а сам электролит готовят из водных растворов солей щелочных металлов и водных растворов щелочей с массовой концентрацией 1 – 30 кг/м3.

2. Устройство для получения электролитного электрического разряда, содержащее твердотельный токоподвод и электролит в качестве катода, твердотельный анод и гидросистему для циркуляции электролита, отличающееся тем, что катод снабжен диэлектрическим пористым телом и установлен так, что между ним и токоподводом образована полость для пропускания электролита, а твердотельный анод установлен напротив пористого тела катода и выполнен в виде кольца, плоскость которого параллельна наружной плоскости пористого тела, при этом кольцо со стороны катода и снаружи закрыто изолятором.

РИСУНКИ

Рисунок 1


MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 16.12.2006

Извещение опубликовано: 20.01.2008 БИ: 02/2008


Categories: BD_2169000-2169999