Патент на изобретение №2169308
|
||||||||||||||||||||||||||
(54) СПОСОБ ВНУТРИТРУБНОЙ ДИАГНОСТИКИ
(57) Реферат: Изобретение относится к измерительной технике и может найти применение в диагностике стенок трубопроводов. Способ внутритрубной диагностики включает определение дефектов ультразвуковым методом, определение дефектов методом магнитных истечений, совмещение и дополнение результатов исследований в процессе анализа полученных данных, согласно изобретению дополнительно производится исследование стенки трубопровода магнитооптическим способом, результаты которого совмещаются с результатами исследований ультразвуковым методом и методом магнитных истечений. Техническим результатом изобретения является повышение надежности внутритрубной диагностики за счет повышения точности определения длины трещины и возможность диагностирования, в частности, паутиной и многоканальной коррозии и длинношовного усталостного растрескивания, питтинга. Изобретение относится к измерительной технике и может найти применение в диагностике стенок трубопроводов. Известен способ магнитооптической дефектоскопии, заключающийся в нахождении трещин в ферромагнитном материале с помощью устройства, состоящего из источника поляризованного света, формирователя светового пучка, пленки магнитооптического материала с защитным покрытием, анализатора, оптической системы формирования изображения дефектов, расположенных последовательно по ходу светового пучка, источника постоянного магнитного поля для возбуждения магнитного потока в исследуемом образце параллельно плоскости магнитооптического материала, полюса источника магнитного поля расположены симметрично с двух сторон относительно магнитооптического материала (Вилесов Ю.Ф, Вишневский В. Г. , Грошенко Н.А. Устройство для визуализации и топографирования магнитных полей. ИЛ 38-98, Крымский ЦНТИ, 1998). Устройство позволяет визуализировать скрытые дефекты в ферромагнитных материалах. Для этого в исследуемом образце создается магнитный поток. На дефектах исследуемого образца, например в трещинах в его объеме, образуются магнитные заряды, которые создают поле рассеяния, перпендикулярное поверхности образца. Поля рассеяния индуцируют в магнитооптическом материале структуру намагниченности, перпендикулярную ее поверхности, которая визуализируется за счет эффекта Фарадея. Скрытые дефекты ферромагнетика проявляются и наблюдаются в виде соседствующих темной и светлой областей. Недостатком способа является невозможность точного определения глубины дефекта. Магнитооптическим способом формируется детальное “плоское” изображение дефекта, но его глубина определяется с меньшей точностью. Дефекты, имеющие равные размеры, но расположенные на разной глубине, имеют различную яркость изображения. И наоборот, дефекты, видимые как равной интенсивности, могут иметь разную глубину. Поэтому затруднено точное определение степени опасности выявленного дефекта и эксплуатационной пригодности исследуемой части трубопровода. Недостатком способа является ограниченная разрешающая способность, уменьшающая точность определения параметров дефектов и не позволяющая диагностировать, в частности, паутинную и многоканальную коррозию и длинношовное усталостное растрескивание, межкристаллитную проникающую коррозию, питтинги. Низкая точность определения длины трещины снижает надежность внутритрубной диагностики. В основу изобретения поставлена задача усовершенствовать способ внутритрубной диагностики путем повышения надежности диагностики за счет увеличения точности определения параметров дефектов и расширения спектра регистрируемых дефектов. Поставленная задача решается тем, что в способе внутритрубной диагностики, включающем определение дефектов ультразвуковым методом, определение дефектов методом магнитных истечений, сопоставление результатов исследований в процессе анализа полученных данных, согласно изобретению дополнительно производится исследование стенки трубопровода магнитооптическим способом, результаты которого сопоставляются с результатами исследований ультразвуковым методом и методом магнитных истечений. Магнитооптическим способом хорошо обнаруживаются дефекты с малыми геометрическими размерами, например паутинная и многоканальная коррозия и длинношовное усталостное растрескивание, межкристаллитная проникающая коррозия, питтинги. За счет более высокого разрешения повышается точность определения длины обнаруженных трещин в стенке трубопровода и формируется детальное, с высоким разрешением, “плоское” изображение дефекта. Каждый из способов внутритрубной диагностики по отдельности хорошо регистрирует отдельные типы дефектов и неудовлетворительно другие типы дефектов. Наиболее качественное, с высоким разрешением, изображение дефекта формируется магнитооптическим способом. Однако глубина дефекта магнитооптическим способом определяется с ограниченной точностью. Сопоставление магнитооптического способа с акустическим и методом магнитных истечений позволяет преобразовать “плоское” изображение дефекта в “объемное”. Акустооптический способ диагностики формирует “глубину” магнитооптического изображения дефекта. Совмещение трех типов диагностики позволяет как расширить спектр диагностируемых дефектов, так и повысить достоверность диагностики за счет сопоставления независимых результатов измерения. Способ реализуется следующим образом. Производится очистка внутренней поверхности трубопровода от грязи и ржавчины. Далее последовательно производят внутритрубную диагностику ультразвуковым и магнитным методами. Определяются дефекты, допускающие дальнейшую эксплуатацию, дефекты, не допускающие эксплуатацию трубопровода без проведения ремонтных работ, и дефекты, идентификация которых затруднена. После чего производится исследование неидентифицированных дефектов магнитооптическим способом диагностики. Если трещина в металле развивается, то ее концы имеют меньшую ширину, чем центральная часть, и не обнаруживаются способом-прототипом. Причем узкая часть трещины может иметь длину, превышающую продиагностированную способом-прототипом, и зафиксированную как допускающую процесс дальнейшей эксплуатации. Кроме того, несколько относительно мелких дефектов (допускающих по отдельности эксплуатацию трубопровода) могут быть связаны между собой трещинами в единый большой дефект, но способом-прототипом этот дефект не диагностируется вследствие малого пространственного разрешения. Дополнительное магнитооптическое исследование устраняет неточность определения длины трещины и повышает надежность диагностики. Пример. Дефект, обнаруженный ультразвуковым методом и методом магнитных истечений, дополнительно подвергается исследованию магнитооптическим методом. Для этого в исследуемом образце создается магнитный поток и производится визуализация полей рассеяния дефектов. На дефектах в стенках трубопровода, например трещинах, образуются магнитные заряды, которые создают поля рассеяния, силовые линии которых выходят из образца и наводят в магнитооптическом материале визуализатора структуру намагниченности, перпендикулярную ее поверхности. Геометрия структуры намагниченности, перпендикулярной поверхности магнитооптического материала, совпадает с геометрией дефектов. Освещают пленку магнитооптического материала поляризованным светом. Свет, отраженный от участков магнитооптического материала, соответствующих бездефектным областям исследуемого образца, гасится. Свет, прошедший через участки магнитооптического материала, содержащие перпендикулярную поверхности структуру намагниченности, изменит вследствие эффекта Фарадея ориентацию плоскости поляризации на ортогональную первоначальной и будет зарегистрирован. Сформируется изображение бездефектной области в виде темного поля и дефектов в виде светлых участков. Геометрические размеры и формы светлого участка на изображении воспроизводят геометрические размеры и форму дефекта в исследуемом образце, что позволяет дополнить картину изображения дефекта, полученного ультразвуковым способом и способом магнитных истечений новыми деталями и, соответственно, более точно определить параметры дефекта и эксплуатационную пригодность данного участка трубопровода. При наличии трещин в стенках трубопровода, отходящих от обнаруженного способом-прототипом дефекта, или связи между несколькими дефектами через трещины, не обнаруживаемые способом-прототипом, заявляемый способ позволяет более точно определить истинные диагностируемые параметры трубопровода. Точность определения параметров дефекта определяется периодом доменной структуры магнитооптического материала и разрешающей способностью оптики. Характерные размеры периода доменной структуры лежат в диапазоне 5 – 50 мкм. Соответственно магнитооптический метод позволяет обнаруживать дефекты с минимальными размерами порядка 10 – 100 мкм, что значительно превышает разрешающую способность заявляемого способа по сравнению со способом-прототипом. Более высокая разрешающая способность магнитооптического метода повышает точность определения параметров дефекта, например длины трещины и позволяет повысить надежность диагностики. Заявляемый способ позволяет повысить надежность внутритрубной диагностики за счет повышения точности определения параметров дефекта, например длины трещины, и позволяет диагностировать, в частности, паутинную и многоканальную коррозию и длинношовное усталостное растрескивание, межкристаллитную проникающую коррозию, питтинги. Более точная диагностик позволяет сократить расходы на обслуживание трубопровода и определение параметров дефекта визуальными методами. Дополнительная магнитооптическая диагностика трубопровода незначительно увеличит эксплуатационные расходы на диагностику, так как производится после ультразвуковой и методом магнитных истечений, и только тех дефектов, которые являются потенциально опасными для продолжения эксплуатации трубопровода. Формула изобретения
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 03.12.2003
Извещение опубликовано: 10.02.2005 БИ: 04/2005
|
||||||||||||||||||||||||||