Патент на изобретение №2398791
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ПОЛУЧЕНИЯ СПОСОБНОГО ВСПЕНИВАТЬСЯ ПОЛИСТИРОЛЬНОГО ГРАНУЛЯТА
(57) Реферат:
Настоящее изобретение относится к получению способного вспениваться полистирола. Описан способ получения способного вспениваться полистирольного гранулята, включающий стадии подачи вспенивающего агента в зону смешения, смешения вспенивающего агента с расплавом полистирола, гомогенизации полученной смеси, охлаждения ее до температуры экструдирования, экструдирования и грануляции в условиях, предотвращающих вспенивание, отличающийся тем, что поддерживают отношение молярного количества подаваемого вспенивающего агента к удельной пропускной способности аппаратуры в зоне смешения (Кс), представляющей собой отношение количества проходящего расплава материального потока, в том числе полистирола, в кг/час к скорости перемешивания в оборотах в минуту, в диапазоне 0,08-0,23 при поддержании разницы температур на входе и выходе стадии гомогенизации и охлаждения в пределах 30-70°С. Технический результат – получение непрерывным методом гранулята полистирола с узким гранулометрическим составом, что обеспечивает получение пеноизделий с диапазоном значений кажущейся плотности от 10 до 40 кг/м3, имеющих удовлетворительные потребительские свойства. 2 з.п. ф-лы, 1 табл.
Заявляемое изобретение относится к химии полимеров, в частности к получению способного вспениваться (вспенивающегося) полистирола, а именно к получению гранулята полистирола, содержащего вспенивающий агент (ВА). Вспенивающийся полистирол (ПСВ) находит широкое применение в гражданском и промышленном строительстве для изготовления пенополистирольных плит, предназначенных для тепловой изоляции, для изготовления амортизирующей упаковки приборов, станков и крупногабаритных бытовых приборов, изоляции трубопроводов и т.п. Во всех областях применения от ПСВ требуется обеспечение оптимального сочетания в пеноизделиях показателей физико-механических свойств: кажущейся плотности изделия, его прочностных показателей и теплопроводности. При использовании пенополистирольных плит в качестве одного из слоев строительных ограждающих конструкций требуется огнестойкость. Пенополистирольные изделия из ПСВ получают хорошо отработанной технологией, включающей обычно три стадии: предварительное вспенивание бисера (гранул) ПСВ водяным паром при температуре 100-140°C, созревание предварительно вспененных частиц в течение 6-24 часов при комнатной температуре и атмосферном давлении и окончательное формование паром в форме, заполненной предварительно вспененными и созревшими частицами полимера. Самым распространенным промышленным способом получения гранул ПСВ является суспензионный способ, согласно которому стирол полимеризуют в водной суспензии с насыщением формирующегося бисера ВА в процессе полимеризации или после нее [см., например, RU 2087486, М.кл.6 C08F 112/08, 1997; US 5616413, М.кл.6 B22B 5/16, 1997; RU 2151153, М.кл.6 C08J 9/224, 1998; RU 2243244, М.кл.7 C08L 25/04, 2004 и др.]. Суспензионный способ позволяет получать полимер со сравнительно невысокой молекулярной массой (ММ) – не выше 200000; из суспензионного ПСВ можно изготавливать пеноизделия любой формы с кажущейся плотностью 35 кг/м3 и ниже, в том числе очень легкие, с кажущейся плотностью 10-15 кг/м3, которые используются для теплоизоляции. К недостаткам суспензионного способа следует отнести высокие затраты на создание и эксплуатацию производства, кроме того, этот метод дает большое количество сточных вод, подлежащих очистке. Бисер ПСВ, полученный суспензионным способом, имеет гранулометрический состав с широким распределением по размеру бисера, в то время как для получения высококачественных пеноизделий требуются частицы ПСВ определенного размера (диаметра) с узким гранулометрическим составом. Последнее обстоятельство требует дополнительной операции рассева и утилизации неподходящих для вспенивания фракций. Утилизация бисера ПСВ затруднена из-за присутствия в нем ВА. Для того чтобы исключить операцию рассева и необходимость утилизации неподходящих фракций, гранулы полистирола (ПС) получали, например, экструзионным способом, а затем суспендировали в воде в присутствии стабилизатора суспензии и пропитывали ВА – смесью н-пентана с изопентаном, под давлением при температуре 90°C в течение 10 часов [EP 0834529, М.кл.6 C08J 9/20, 1998]. Тем самым в процессе снова появляются сточные воды, которые требуется утилизировать. В дальнейшем была разработана технология получения гранул ПСВ, согласно которой ВА смешивают с полистиролом в расплаве, выдавливают стренги полимера, содержащего ВА, в условиях, предотвращающих преждевременное вспенивание, и гранулируют их. Известен способ получения гранул способного вспениваться ПС, согласно которому подают расплав полимера и ВА в зону смешения, смешивают ВА с полимером при интенсивном разрезающем перемешивании в первом статическом смесителе, выдерживают смесь при интенсивном разрезающем перемешивании во втором статическом смесителе, охлаждают смесь при перемешивании в третьем статическом смесителе до промежуточной температуры, затем смесь охлаждают до температуры грануляции, выдавливают расплав полимера через фильеру с резким охлаждением и гранулируют под повышенным давлением [RU 2295439, М.кл.7 B29B 9/06, 2007]. В каждом статическом смесителе поддерживают температуру в определенном диапазоне, зависящем от соотношения величин потока ВА и максимально возможного потока ВА, а также по всему каскаду поддерживают в определенном соотношении весовые потоки расплава полимера и ВА. Тем самым достигается возможность переработки в ПСВ широкого марочного ассортимента полистирола и получение ПСВ, который обеспечивает получение ППС с кажущейся плотностью от 12 до 55 кг/м3. Недостатком способа по RU 2295439 является то, что получаемый готовый продукт – ПСВ имеет широкий гранулометрический состав: размер частиц 0,9-1,4 мм (примеры 4, 5, 7); 1,4-2,0 мм (примеры 3, 6); к тому же в патенте не приводятся показатели физико-механических свойств пенополистирола, сырьем для производства которого является вспенивающийся полистирол по указанному патенту. Опыт показывает, что на размер полученных гранул ПСВ оказывают влияние многие факторы, а именно конструкция гранулятора, реология исходного полистирола и условия грануляции. От размера и распределения по размерам гранул ПСВ зависят такие параметры переработки в пеноизделия, как предвспенивание, заполнение предвспененным бисером блок-формы и спекаемость его при формовании, то есть параметры, от которых зависят физико-механические показатели пенополистирола. Наиболее близким по совокупности существенных признаков к заявляемому способу является способ получения способного вспениваться ПС, включающий полимеризацию стирола с получением ПС со средневесовой молекулярной массой (Mw) более 170000, дегазацию полученного расплава полимера, введение (подачу) ВА в расплав полистирола в зоне смешения в статическом или динамическом смесителе, смешение ВА с расплавом при температуре не ниже 150°C, охлаждение смеси до температуры, по меньшей мере, 120°C, выгрузку через сопловую решетку с отверстиями, диаметр которых на выходе не превышает 1,5 мм и гранулирование выходящих стренг [US заявка 2005/0156344, М.кл.7 B29C 44/00, 2005]. Указывается (примеры и пп.6-8, 10-15, 19-20 формулы изобретения), что размер гранул ПСВ можно регулировать добавками пластификаторов, изменяя температуру расплава, геометрические параметры гранулирующего устройства, а также добавкой 0,05-1,5% масс, воды, выполняющей функцию нуклеатора, причем воду в расплав ПС вводят и гомогенизируют эту смесь до введения ВА. В способе по US 2005/0156344 используют гранулирующую головку с отверстиями диаметром не более 1,5 мм (п.1 и п.16 формулы), лучше 0,2-1,2 мм (п.9 формулы) и получают гранулы диаметром 0,4-1,8 мм (п.22 формулы). Грануляцию выполняют при температуре расплава полистирола, смешанного с ВА, 160-200°C (примеры 1 и 2) и температуре гранулирующей головки 180-240°C (пример 2). При повышении температуры расплава и головки, при добавлении воды или пластификаторов, при изменении геометрии отверстий в гранулирующей головке можно уменьшить диаметр бисера при одном и том же диаметре отверстий. Указывается, что получаемые по US 2005/0156344 гранулы ПСВ дают при вспенивании «вспененные частицы с тонкоячеистой структурой пены, которая была выявлена под микроскопом» (примеры 7 и 8, добавление воды) или «вспененные частицы с гомогенной структурой пены» (примеры 9 и 10). Однако не приведены ни физико-механические показатели пенополистирола, который был получен из гранул ПСВ, ни его кажущаяся плотность. Недостатком способа по US 2005/0156344 можно считать недостаточно узкий гранулометрический состав получаемого готового продукта, например, в примере 11 указано, что только 80% частиц ПСВ имеют размер от 0,62 до 0,8 мм. Технический результат, достигаемый в заявляемом изобретении, заключается в получении непрерывным методом гранулята полистирола с узким гранулометрическим составом, максимально приближающегося к сферической форме и содержащего вспенивающий агент, который обеспечивает получение пеноизделий с широким диапазоном значений кажущейся плотности от 10 до 40 кг/м3, имеющих удовлетворительные потребительские свойства. Указанный технический результат достигается тем, что в способе получения способного вспениваться полистирольного гранулята, включающем стадии смешения полистирола с нуклеатором и другими технологическими добавками, смешения вспенивающего агента с расплавом полистирола, гомогенизации полученной смеси, охлаждения ее до температуры экструдирования, грануляции в условиях предотвращающих вспенивание, поддерживают отношение количества подаваемого вспенивающего агента (в молях) к удельной пропускной способности аппаратуры в зоне смешения (Кс) в пределах 0,08-0,23 при поддержании разницы температур на входе и выходе стадии гомогенизации и охлаждения смеси в пределах 30-70°C. При этом для получения ПСВ используют полистирол с отношением средневязкостной молекулярной массы (Mv) к коэффициенту полидисперсности (то есть отношению средневязкостной молекулярной массы (Mw) к среднечисленной молекулярной массе (Mn)) в пределах (70-115)×103. Под удельной пропускной способностью аппаратуры в зоне смешения мы понимаем отношение количества проходящего материального потока к скорости перемешивания (числу оборотов шнеков в минуту). На стадии плавления смеси полистирола поддерживают температуру 180-250°C; а на стадии гомогенизации – охлаждения поддерживают температуру смеси полистирола со вспенивающим агентом на входе 180-210°C и на выходе 140-180°C. В качестве полистирола в заявляемом способе может быть использован гомополистирол марок СТАЙРОВИТ® (ТУ 2214-001-11175949-2003) или другие марки ПС (например, по ГОСТ 20282-86), молекулярная масса которых находится в заданном диапазоне значений отношения Mv к Mw/Mn. Для получения ПСВ также может использоваться расплав полистирола с аналогичными молекулярными характеристиками, получаемый в результате непрерывной полимеризации в массе стирола и прошедший стадию удаления непрореагировавшего мономера. В качестве вспенивающего агента использовались вещества, выбранные из группы, включающей насыщенные углеводороды C4-C8, такие как бутан, изобутан, пентан, изопентан, гексан, изогексан и октан, предпочтительно пентан или изопентан или их смеси. Перерабатываемая смесь содержала нуклеатор, в качестве которого использовались мелкодисперсные порошки талька, карбоната кальция, каолина, смеси лимонной кислоты и бикарбоната натрия, а также азодикарбонамид, азодиизобутиронитрил и др. Нуклеатор в количестве 0,05-5.0% мас. смешивали с полистиролом или уже с готовым расплавом полистирола. Перерабатываемая смесь может содержать вещества, препятствующие горению (антипирены). В качестве антипирена обычно использовали гексабромциклододекан в количестве 1-5% мас., лучше 1,5-2,0% мас. с синергетической добавкой. В качестве синергетической добавки может быть использован магний-алюминиевый гидротальцит, гидроксиды металлов, соединения фосфора, неорганические и органические фосфаты, фосфиты или фосфонаты, или их смеси. В качестве технологической добавки, ослабляющей пропускание инфракрасного излучения через пенополистирольную плиту, в результате чего достигаются улучшенные теплоизолирующие свойства, могут быть использованы углеродная сажа, графит, диоксид титана и частицы металла, например алюминия или их комбинации. Указанные добавки вводятся в количестве 0,6-6,0% от общей массы загрузки, предпочтительно после пластификации полимера и перед введением вспенивающего агента. Указанные добавки окрашивают бисер в серый (черный) цвет. Однако могут быть использованы и другие красители, например фталоцианиновые, и в частности, оранжевый краситель. При получении гранул вспенивающегося полистирола использовали также стабилизаторы термо- и светодеструкции. В качестве стабилизатора термо- и свето-деструкции использовали, например, октадецил-3-(3,5-дитретбутил-4-гидроксифенил)-пропионат или смесь трис-(2,4-дитретбутилфенил)фосфита с октадецил-3-3(3,5-дитретбутил-4-гидроксифенил)пропионатом в количестве 0,05-0,1% мас. от массы загрузки. Все указанные технологические добавки могут быть непосредственно смешаны с полистиролом или расплавом полистирола, получаемым с установки непрерывной полимеризации стирола; они также могут быть введены в виде соответствующих концентратов. Далее изобретение поясняется примерами, но не ограничено ими. Пример 1 В зону смешения узла гравитометрической дозировки подают 100 мас.ч. полистирола марки СТАЙРОВИТ 106В со средневязкостной MM (Mv), равной 216000, и коэффициентом полидисперсности (Mw/Mn) – 2,3 (отношение Mv), к коэффициенту полидисперсности равно 94×103), туда же подают 2,0 мас.ч. гексабромциклододекана, 0,5 мас.ч. нуклеатора – талька. Образованную смесь подают в загрузочную зону двухшнекового экструдера с соотношением длины шнеков L к диаметру D, равным 31:1, где при температуре 180-210°C происходит плавление и смешение в расплаве всех компонентов, после чего в зону смешения через инжектор подается вспенивающий агент – пентан в количестве 6,5% мас. под давлением до 120 бар. В зоне смешения происходит гомогенное смешение ВА с расплавом полистирола. Удельная пропускная способность экструдера в зоне смешения (Кс) равна 1,75 кг/час/1/мин. При этом отношение количества пентана (в молях) к удельной пропускной способности аппаратуры в зоне смешения (Кс) равно 0,18. Полученную в зоне смешения массу с температурой 200°C подают в аппаратуру гомогенизации и охлаждения, где расплав охлаждают до температуры 160°C. Разница температур на входе и выходе стадии гомогенизации и охлаждения смеси составляет 40°C. Затем масса проходит через короткий статический смеситель для выравнивания концентрационного и температурного профиля потока и поступает в гранулятор с системой подводного гранулирования. В режущей камере системы подводного гранулирования поддерживается температура воды в пределах 40-70°C и давление 8,0-10,0 бар. Полученная смесь воды и гранул вспенивающегося полистирола подается в центробежную сушилку, где происходит отделение гранул от воды и их сушка. Для готового продукта проводили определение следующих показателей: – гранулометрический состав: средний диаметр частиц, мм, массовая доля гранул после просева на сите с размером ячейки 1,6 мм и 0,5 мм, %, массовая доля основной фракции, %, по ТУ 2291-008-56925804-2008; – массовая доля порообразователя, %, по OCT 301-05-202-92Е, – массовая доля остаточного мономера, % мас., по ГОСТ 15820-82. Из полученных гранул вспенивающегося полистирола (ПСВ) изготавливали пенополистирольные плиты беспрессовым способом, который включает стадии: предвспенивания ПСВ водяным паром при температуре 100-104°C, промежуточного хранения (созревания) предвспененных гранул, спекания их с формованием блока и последующего разрезания его на плиты. Для полученных пеноизделий (плит) определяли следующие показатели: – плотность, кг/м3, по ГОСТ 17177-94; – прочность на сжатие при 10% линейной деформации, МПа, по ГОСТ 17177-94; – предел прочности при статическом изгибе, МПа, по ГОСТ 17177-94; – коэффициент теплопроводности при (25±5)°C, Вт/(м×K), по ГОСТ 7076-94; – водопоглощение за 24 часа, % по объему, по ГОСТ 17177-94; – размер ячеек, мкм, по СП – 30/08; – время самостоятельного горения (самозатухание), с. Значения свойств гранул ПСВ и показателей физико-механических свойств и теплопроводности полученной пенополистирольной плиты приведены в таблице. Примеры 2-6; 7К-9К Опыты проводили как в примере 1, но брали полистирол с другими значениями Mv и Mw/Mn, меняли количество и состав вспенивающегося агента и отношение Mv/ Mw/Mn. Рецептура загрузки, условия получения гранул ПСВ, их свойства и значения показателей свойств полученных из них пенополистирольных плит приведены в таблице. Как видно из таблицы, заявляемый способ позволяет получать гранулы сферической формы вспенивающегося полистирола однородного гранулометрического состава с узким распредением по размеру гранул. В промышленных условиях из произведенных гранул методом формования были получены пенополистирольные плиты с высокими прочностными показателями (прочностью на сжатие и пределом прочности при статическом изгибе). Кроме того, заявляемый способ позволяет существенно улучшить теплоизолирующие свойства пенополистирольных плит: коэффициент теплопроводности для плит, содержащих добавку графита, 0,029-0,030 Вт/м×K против 0,034-0,038 Вт/м×K для плит, полученных в контрольных примерах, и 0,037-0,043 Вт/м×K для пенополистирольных плит по ГОСТ 15588-86. Водопоглощение полученных по заявляемому способу пеноплит примерно в 2-3 раза ниже водопоглощения товарных партий экструдированных пенополистирольных плит, произведенных без соблюдения заявляемых приемов. Полученные пеноизделия характеризуются низким содержанием остаточного мономера – стирола, что обеспечивает улучшенные санитарно-гигиенических свойства этих изделий.
Формула изобретения
1. Способ получения способного вспениваться полистирольного гранулята, включающий стадии подачи вспенивающего агента в зону смешения, смешения вспенивающего агента с расплавом полистирола, гомогенизации полученной смеси, охлаждения ее до температуры экструдирования, экструдирования и грануляции в условиях, предотвращающих вспенивание, отличающийся тем, что поддерживают отношение молярного количества подаваемого вспенивающего агента к удельной пропускной способности аппаратуры в зоне смешения (Кс), представляющей собой отношение количества проходящего расплава материального потока, в том числе, полистирола в кг/час к скорости перемешивания в оборотах в минуту, в диапазоне 0,08-0,23 при поддержании разницы температур на входе и выходе стадии гомогенизации и охлаждения в пределах 30-70°С. 2. Способ по п.1, отличающийся тем, что используют полистирол с отношением средневязкостной молекулярной массы (Mv) к коэффициенту полидисперсности (Mw/Mn) в пределах (70-115)·103. 3. Способ по п.1, отличающийся тем, что в качестве технологической добавки используют графит, взятый в количестве 0,6-6,0% от массы загрузки.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||