Патент на изобретение №2396641

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2396641 (13) C1
(51) МПК

H01M8/00 (2006.01)
B82B1/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 17.09.2010 – действует

(21), (22) Заявка: 2009117279/09, 07.05.2009

(24) Дата начала отсчета срока действия патента:

07.05.2009

(46) Опубликовано: 10.08.2010

(56) Список документов, цитированных в отчете о
поиске:
RU 2329571 С1, 20.07.2008. RU 2334784 С2, 29.07.2003. JP 2004349029 А, 09.12.2004. US 2002083640 А1, 04.07.2002.

Адрес для переписки:

249039, Калужская обл., г. Обнинск, а/я 9004, Ю.Б. Базанову

(72) Автор(ы):

Гринберг Виталий Аркадьевич (RU),
Скундин Александр Мордухаевич (RU),
Михайлова Алла Александровна (RU),
Трусов Лев Ильич (RU),
Красько Людмила Борисовна (RU),
Фролов Сергей Дмитриевич (RU)

(73) Патентообладатель(и):

Ассоциация делового сотрудничества в области передовых комплексных технологий “АСПЕКТ” (RU),
Государственное образовательное учреждение высшего профессионального образования “Московская государственная академия тонкой химической технологии имени М.В. Ломоносова” (МИТХТ им. М.В. Ломоносова) (RU)

(54) КАТОД ДЛЯ ЭЛЕКТРОВОССТАНОВЛЕНИЯ КИСЛОРОДА ВОЗДУХА В БОРГИДРИДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТАХ

(57) Реферат:

Изобретение относится к новому катоду со стабильным потенциалом для электровосстановления кислорода воздуха в боргидридных топливных элементах. Согласно изобретению катод представляет собой многослойную градиентно-пористую структуру с пористостью до 40% и содержит конструктивную металлическую основу электрода с газодиффузионным слоем, например никелевую сетку с напрессованным тефлоном, на обратной стороне которой нанесена активная катодная масса, включающая наноразмерный электрокатализатор, содержащий оксид марганца в форме наночастиц на пористом носителе. Активная масса обычно содержит в качестве пористого углеродного носителя сажу Ketjen Black с удельной поверхностью 600-1500 м2/г. Техническим результатом является высокая толерантность к борогидриду щелочного металла. 2 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к новому катоду, снабженному наноструктурным бесплатиновым катализатором, для электровосстановления кислорода в щелочной среде, и может быть использовано для создания автономного зарядного устройства (АЗУ) на основе боргидридных топливных элементов с градиентно-пористыми матричными структурами.

Имеется большое количество работ по разработке топливных элементов с прямым окислением борогидрида. Разработка катодных неплатиновых катализаторов является одним из важных аспектов при электровосстановления кислорода воздуха в боргидридных топливных элементах. Одним из основных критериев для выбора катодных материалов является толерантность к борогидриду. При использовании боргидридного топлива в щелочном электролите на аноде происходит окисление боргидрида:

E10=-1.24 B.

На катоде протекает электровосстановление кислорода

Суммарная реакция в элементе имеет вид:

Е°3=1.64 В,

где E10 и Е20 – стандартные потенциалы реакций (1) и (2), Е30 – потенциал разомкнутой цепи элемента (ЭДС).

А.Ю.Цивадзе и др. в статье «Новые электрокатализаторы для топливного элемента (ТЭ) с прямым окислением боргидридов (Доклады Академии Наук, 2007, том 414, 2, с.211-214) описаны катализаторы, такие как PdCo, PtCo, PdFe, CoN4 с низкой активностью по отношению к анодному окислению борогидрида и, вероятно, толерантные к нему. Наличие высокой активности при электровосстановлении кислорода позволит использовать их в качестве катодных электрокатализаторов. Было исследовано влияние концентрации NaBH4 на стационарные потенциалы указанных выше катализаторов в 6М NaOH. Видно, что стандартный катализатор Pt ETEK реагирует на присутствие борогидрида уже при концентрации 10-4 М. Однако структуры катода на основе указанных катализаторов не описано.

Указанные в этой статье катоды являются наиболее близкими по составу и назначению.

Задачей настоящего изобретения является разработка неплатиновых катодов с высокой толерантностью к борогидриду на основе наноразмерных катализаторов электровосстановления кислорода воздуха

Согласно изобретению предлагается наноразмерный бесплатиновый катализатор электровосстановления кислорода воздуха в боргидридных топливных элементах, содержащий оксид металла на пористом углеродном носителе.

Отличием предлагаемого катализатора от известного является использование в качестве оксида металла оксида марганца в форме наночастиц.

Можно использовать в качестве носителя, носители выбранные из пористых углеродных носителей (Vulkan XC-72, active carbon RBDA, standard R-5000, NSM-III, Ketjen black and Raven-1020, graphite, и др.).

Преимущественно катализатор содержит в качестве углеродного носителя сажу Ketjen Black с удельной поверхностью 600-1500 м2/г.

Изобретение также относится к катоду для электровосстановления кислорода воздуха в боргидридных топливных элементах (ТЭ), содержащему оксид металла на пористом углеродном носителе.

Согласно настоящему изобретению катод для электровосстановления кислорода воздуха в боргидридных топливных элементах представляет собой многослойную градиентно-пористую структуру с пористостью до 40%, и содержит конструктивную основу электрода с газодиффузионным слоем, например никелевую сетку с напрессованным тефлоном, на обратной стороне которой нанесена активная масса наноразмерного катодного катализатора, содержащего оксид марганца в форме наночастиц на пористом носителе.

Указанная структура катода является гидрофобно-гидрофильной системой.

Газодиффузионный слой должен обеспечивать электровосстановление кислорода воздуха со скоростью, равной скорости электроокисления борогидридов щелочных металлов.

В качестве конструктивной основы с газодиффузионным слоем катод обычно содержит никелевую сетку с напрессованным тефлоном. Активная масса наноразмерного катодного катализатора содержит как правило в качестве углеродного носителя сажу Ketjen Black с удельной поверхностью 600-1500 м2/г.

Однако активная масса в качестве пористого носителя может содержать и другие носители, выбранные из других углеродных носителей (Vulkan XC-72, active carbon RBDA, standard R-5000, NSM-III, Ketjen black and Raven-1020, graphite, и др.).

1. Методика изготовления градиентно-пористой многослойной структуры (ГПМС) газодиффузионных положительных электродов (катодов)

Изготовление газодиффузионных положительных электродов (катодов) включает в себя 2 стадии: 1) изготовление газодиффузионной основы (диффузионный слой) с токоотводом; 2) нанесение активной массы на конструктивную основу, т.е. формирование активного слоя.

2. Методика изготовления газодиффузионной основы (диффузионный слой) с токоотводом.

Конструктивную основу катода – никелевую сетку толщиной 150-300 микрон предварительно обезжиривают в органическом растворителе (уайт спирите), высушивают и прессуют с пористым тефлоном толщиной 300-600 микрон (покупное изделие, пористость до 30%). Условия прессования подбираются и описаны в соответствующей технологической карте на изготовление ГПМС катода.

3. Методика приготовления активной массы для ГПМС катода. Определенное количество (около 20-35 мг) катализатора на углеродном носителе (сажа Kejen black) смешивают с определенным количеством дважды перегнанной воды. Далее смесь обрабатывают на ультразвуковом диспергаторе УЗДН-4 в течение 5 мин. После этого добавляют суспензию ПТФЭ (рассчитывается исходя из навески катализатора) допускается до 40 весовых% в расчете на политетрафторэтилен (ПТФЭ) от массы катализатора. Полученную массу вновь обрабатывают на УЗДН-4 в течение 10 мин. Далее массу сушат при температуре 100°С до постоянного веса и наносят на конструктивную основу катода – никелевую сетку (толщиной 150-300 микрон) со стороны, обратной напрессованному газодиффузионному слою, или спрэй-методом (путем распыления с помощью аэрографа), или намазыванием. После высыхания толщина каталитического слоя катода не должна превышать 50 мкм. Далее нанесенный каталитический слой прессуют давлением 50-300 кг/см2 в течение 1-2 мин. и сушат при температуре 340°С. Термообработка при высокой температуре необходима для удаления поверхностно-активных веществ – стабилизаторов суспензии ПТФЭ. Готовые электроды хранят на воздухе и исследуют электрохимические характеристики в реакции электровосстановления кислорода воздуха в полуэлементе.

4. Использование нанесенных наноразмерных катализаторов на основе оксидов марганца и других металлов, повышающих толерантность по отношению к боргидриду.

Результаты исследований представлены в таблице. Из таблицы видно, что наибольшую каталитическую активность в реакции электровосстановления кислорода воздуха проявил образец 31, который представлял собой наночастицы оксидов марганца на саже Ketjen Black. Плотность тока при поляризации 200 мВ составила 98.9 мА см-2.

Таблица.
Каталитическая активность катодных катализаторов в реакции электровосстановления кислорода воздуха в режиме газодиффузионных электродов при различных поляризациях в 6 М КОН
образцов Катализатор на носителе Ketjen Black Основа для нанесения катализатора Плотность тока при поляризации 100 мВ, мА см-2 Плотность тока при поляризации 150 мВ, мА см-2 Плотность тока при поляризации 200 мВ, мА см-2
25 АП-2041+1%Co3O4 кп 18 45.8 79.5
26 Уголь NORIT кп 6.8 19 35.8
27 Угорь NORIT+I%Co3O4 кп 8.4 17.1 27.9
28 1%Co3O4 на саже Ketjen Black кп 30 63.2 95.8
29 АП-2041 1% Co3O4 на саже Ketjen Black из мет.орг.соед. Со кп 13.6 36.8 66.3
30 Уголь NORIT+I% Co3O4 кп 10.5 20.5 32
31 6.7% MпxOy на саже Ketjen Black кп 1имп 29 58 90.5
2имп 33.2 63 98.9
32 6.7% МпxОy на саже Ketjen Black кп 28 50 78
ФП – фторопласт

Исследованные катализаторы 25-32 содержали 20% ФП и наносились на КП (углеродная бумага), содержащую 30% ФП. Для удаления ПАВ из эмульсии фторопласта образцы отжигались при 350°С 10 минут. Близкие результаты по каталитической активности в электровосстановлении кислорода воздуха были получены на катализаторах 1% CО3O4 (образец 28) на саже Ketjen Black. Плотность тока при поляризации 200 мВ составила 95.8 мА см-2. Дополнительными опытами было установлено, что прямого электроокисления боргидрида на таких материалах не наблюдается. И, таким образом, синтезированные катализаторы имеют повышенную толерантность по отношению к боргидриду. Длительные испытания образца 32 в условиях поддержания постоянного потенциала (при поляризации 200 мВ положительное бестокового потенциала) показали, что плотность тока электровосстановления кислорода воздуха возрастает от значения 78 мА см-2 до значений, превышающих 90 мА см-2 (см. чертеж). Последнее свидетельствует о высокой стабильности и хорошей каталитической активности этого материала в исследованной реакции.

Формула изобретения

1. Катод для электровосстановления кислорода воздуха в боргидридных топливных элементах, который представляет собой многослойную градиентно-пористую структуру с пористостью до 40% и содержит конструктивную металлическую основу электрода с газодиффузионным слоем, на которую нанесена активная катодная масса, включающая наноразмерный электрокатализатор, содержащий оксид марганца в форме наночастиц на пористом носителе.

2. Катод по п.1, который содержит в качестве конструктивной металлической основы электрода с газодиффузионным слоем никелевую сетку с напрессованным тефлоном.

3. Катод по п.1, в котором активная масса содержит в качестве пористого углеродного носителя сажу Ketjen Black с удельной поверхностью 600-1500 м2/г.

РИСУНКИ

Categories: BD_2396000-2396999