Патент на изобретение №2393589

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2393589 (13) C1
(51) МПК

H01L29/812 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 18.08.2010 – действует

(21), (22) Заявка: 2009119693/28, 25.05.2009

(24) Дата начала отсчета срока действия патента:

25.05.2009

(46) Опубликовано: 27.06.2010

(56) Список документов, цитированных в отчете о
поиске:
RU 2307424 C1, 27.09.2007. RU 2227344 C2, 20.04.2004. SU 1097139 A, 15.04.1987. СА 921175 А1, 13.02.1973.

Адрес для переписки:

141190, Московская обл., г. Фрязино, ул. Вокзальная, 2А, Федеральное государственное унитарное предприятие “Научно-производственное предприятие “Исток”, патентный отдел

(72) Автор(ы):

Лапин Владимир Григорьевич (RU),
Петров Константин Игнатьевич (RU),
Темнов Александр Михайлович (RU)

(73) Патентообладатель(и):

Федеральное государственное унитарное предприятие “Научно-производственное предприятие “Исток” (ФГУП НПП “Исток”) (RU)

(54) МОЩНЫЙ СВЧ ПОЛЕВОЙ ТРАНЗИСТОР С БАРЬЕРОМ ШОТКИ

(57) Реферат:

Изобретение относится к электронной технике. Мощный СВЧ полевой транзистор с барьером Шотки содержит полуизолирующую подложку арсенида галлия с активным слоем, гребенку из чередующейся, по меньшей мере, более одной последовательности единичных электродов истока, затвора, стока. Между парами единичных электродов исток-сток расположены области полуизолирующего арсенида галлия, а в парах единичных электродов исток-сток расположены каналы с канавками, в последних расположены единичные электроды затвора. Единичные электроды затвора расположены асимметрично в сторону единичных электродов истока, одноименные единичные электроды истока, затвора, стока соединены электрически. При этом полевой транзистор с барьером Шотки, согласно изобретению, в канале каждой из пар единичных электродов исток-сток со стороны единичного электрода истока дополнительно содержит диэлектрический слой, имеющий низкую диэлектрическую проницаемость, толщиной, равной 0,15-0,25 мкм, а каждый из единичных электродов затвора относительно его боковой поверхности со стороны единичного электрода стока выполнен по высоте с разным размером поперечного сечения в сторону единичного электрода истока, верхним – длинным и нижним – коротким, примыкающим к поверхности канавки канала, при этом размер поперечного сечения верхней – длинной части превышает размер поперечного сечения нижней – короткой части на 0,5-0,8 мкм, высота последней равна толщине дополнительного диэлектрического слоя. При этом с одной стороны две взаимно перпендикулярные поверхности дополнительного диэлектрического слоя относительно его толщины непосредственно примыкают по ширине единичного электрода затвора к вертикальной поверхности его нижней – короткой части и к горизонтальной превышающей поверхности верхней – длинной части соответственно, а с противоположной стороны упомянутые поверхности расположены вровень с краем верхней – длинной части единичного электрода затвора либо перекрывают от этого края канал с единичным электродом истока не более 4 мкм. Изобретение обеспечивает повышение выходной мощности, коэффициента усиления по мощности и коэффициента полезного действия. 3 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к электронной технике и может быть использовано в качестве активных элементов СВЧ устройств различного назначения.

Выходная мощность и коэффициент усиления по мощности (далее коэффициент усиления) – одни из основных параметров мощных СВЧ полевых транзисторов с барьером Шотки (далее полевой транзистор).

Одни из возможных путей повышения указанных параметров – это:

– снижение теплового и паразитных электрических сопротивлений,

– увеличение ширины электрода затвора,

– снижение паразитных емкостей,

– либо их сочетание.

С целью снижения паразитного электрического сопротивления электрода затвора полевого транзистора используют известное и широко используемое на сегодня конструктивное решение, заключающееся в том, что электрод затвора полевого транзистора с барьером Шотки выполнен так называемой Т-образной конфигурацией субмикронной длины [1]. При этом диэлектрический слой расположен под верхней частью электрода затвора Т-образной конфигурации, как со стороны электрода истока, так и со стороны электрода стока. Данное конструктивное решение позволило благодаря снижению паразитного электрического сопротивления повысить выходную мощность и коэффициент усиления полевого транзистора.

Однако, с другой стороны, наличие диэлектрического слоя под верхней частью электрода затвора полевого транзистора Т-образной конфигурации со стороны электрода стока приводит к возрастанию паразитной емкости между электродами затвор-сток и тем самым:

во-первых, ограничивает максимально возможное повышение выходных параметров СВЧ,

во-вторых, упомянутая паразитная емкость является элементом нежелательной положительной обратной связи, приводящей к паразитной генерации, это усложняет использование полевого транзистора в качестве активного элемента в устройствах СВЧ и как следствие – ограничивает его функциональные возможности.

С целью увеличения ширины электрода затвора полевого транзистора используют многозатворную конструкцию.

При этом чем больше ширина общего электрода затвора, тем выше выходная мощность.

Однако, с другой стороны, при достаточно большой ширине единичного электрода затвора снижается эффективность работы полевого транзистора, то есть удельная выходная мощность в расчете на единицу ширины единичного электрода затвора вследствие значительного паразитного сопротивления общего электрода затвора и как следствие – снижение выходной мощности, коэффициента усиления и коэффициента полезного действия.

Известен мощный СВЧ полевой транзистор с барьером Шотки многозатворной конструкции, в котором с целью устранения выше указанного недостатка он выполнен в виде так называемой гребенки из чередующейся последовательности единичных электродов истока, затвора, стока, при этом единичные электроды затвора расположены в канавках каналов, выполненных между единичными электродами истока и стока.

При этом одноименные единичные электроды истока, затвора, стока соединены электрически [2].

Данная конструкция полевого транзистора с барьером Шотки позволила снизить паразитное сопротивление общего электрода затвора и как следствие – увеличить выходную мощность, коэффициент усиления и коэффициент полезного действия.

Кроме того, она позволяет сделать полевой транзистор с барьером Шотки компактным.

Недостаток данной конструкции заключается в неточности совмещения единичных электродов затвора в канавках каналов, обуславливаемая характеристиками оборудования и технологией изготовления. Неточность совмещения единичных электродов затвора полевого транзистора приводит к неидентичности его каналов. А неидентичность каналов в свою очередь приводит к снижению эффективности сложения мощности каналов и как следствие – снижению выходной мощности и коэффициента усиления СВЧ полевого транзистора с барьером Шотки.

Известен мощный СВЧ полевой транзистор с барьером Шотки, выполненный также в виде гребенки из чередующейся, по меньшей мере, более одной последовательности единичных электродов истока, затвора, стока [3].

При этом, с целью устранения упомянутой выше неидентичности каналов, между парами единичных электродов исток-сток расположены области полуизолирующего арсенида галлия, а единичные электроды затвора, расположенные в парах единичных электродов исток-сток, выполнены длиной не более 0,7 мкм и смещены в канавке в сторону единичного электрода истока.

При этом одноименные единичные электроды истока, затвора, стока соединены электрически.

Это позволило:

во-первых, устранить неидентичность каналов и тем самым повысить эффективность сложения мощности каналов,

во-вторых, повысить пробивное напряжение между единичными электродами затвор-сток и тем самым повысить напряжение питания единичного электрода стока.

И как следствие того и другого – увеличение выходной мощности, коэффициента усиления и коэффициента полезного действия полевого транзистора с барьером Шотки.

Однако, с другой стороны:

во-первых, при некоторых размерах области полуизолирующего арсенида галлия, например, менее 4 мкм наблюдается повышение тока утечки между единичными электродами исток-сток, что приводит к появлению неуправляемого единичным электродом затвора тока стока,

во-вторых, при некоторых размерах канавок в парах единичных электродов исток-сток, например, менее 0,5 мкм, в которых расположены единичные электроды затвора, имеет место снижение пробивного напряжения между электродами затвор-исток и затвор-сток.

И как следствие того и другого – снижение выходной мощности, коэффициента усиления и коэффициента полезного действия полевого транзистора с барьером Шотки.

Известен мощной СВЧ полевой транзистор с барьером Шотки, на полуизолирующей подложке арсенида галлия с активным слоем n-типа проводимости, толщиной не более 0,4 мкм и концентрацией легирующей примеси 2×1017-1×1018 см3, который выполнен, как и предыдущий аналог, в виде гребенки из чередующейся, по меньшей мере, более одной последовательности единичных электродов истока, затвора, стока. При этом между парами электродов исток-сток расположены области полуизолирующего арсенида галлия, а в парах единичных электродов исток-сток выполнены каналы с канавками, в последних расположены единичные электроды затвора длиной не более 0,7 мкм, при этом единичные электроды затвора выполнены асимметричными в сторону электродов истока, одноименные единичные электроды истока, затвора, стока соединены электрически [4 – прототип].

В котором, с целью снижения тока утечки между единичными электродами исток-сток и увеличения пробивного напряжения между единичными электродами затвор-исток и сток-затвор, области полуизолирующего арсенида галлия выполнены шириной, равной 4-6 мкм, канавки в парах единичных электродов исток-сток выполнены шириной, равной 0,9-1,3 мкм, и глубиной, равной 0,2-0,3 мкм, а единичные электроды затвора расположены от края канавок со стороны единичных электродов истока и стока на расстоянии, равном 0,1-0,3 и 0,5-0,7 мкм соответственно.

Оптимизация ширины области полуизолируещего арсенида галлия, ширины и глубины канавок, равно как и расположение единичных электродов затвора в канавках, обеспечила снижение токов утечки между единичными электродами исток-сток и увеличение пробивного напряжения между единичными электродами затвор-исток и затвор-сток и как следствие – дальнейшее повышение выходной мощности, коэффициента усиления и коэффициента полезного действия СВЧ полевого транзистора с барьером Шотки.

Способность СВЧ полевого транзистора отдавать мощность зависит от его способности пропускать достаточно большой ток через его канал.

И, следовательно, указанная способность СВЧ полевого транзистора увеличивается с каждой чередующейся в гребенке последовательностью единичных электродов истока, затвора, стока.

Однако количество последовательностей электродов истока, затвора, стока ограничиваться как размерами кристалла полевого транзистора, так и его электрическими параметрами, например фазовой неидентичностью сигнала, распределенного по единичным электродам затвора полевого транзистора.

Выходная мощность данного СВЧ полевого транзистора с барьером Шотки составляет порядка 750 мВт, коэффициент усиления порядка 10 дБ на частоте 10 ГГц.

Эти достаточно высокие выходные параметры данного полевого транзистора с барьером Шотки являются не достаточными при применении его в качестве активного элемента в ряде устройств СВЧ диапазона, например усилителей мощности для активных фазированных антенных решеток (АФАР), где требуется высокая удельная мощность и высокий коэффициент полезного действия.

Техническим результатом изобретения является повышение выходной мощности, коэффициента усиления по мощности, коэффициента полезного действия и расширение функциональных возможностей СВЧ полевого транзистора с барьером Шотки.

Указанный технический результат достигается заявленным мощным СВЧ полевым транзистором с барьером Шотки, содержащим полуизолирующую подложку арсенида галлия с активным слоем, гребенку из чередующейся, по меньшей мере, более одной последовательности единичных электродов истока, затвора, стока, при этом между парами единичных электродов исток-сток расположены области полуизолирующего арсенида галлия шириной не менее 4 мкм, а в парах единичных электродов исток-сток расположены каналы с канавками шириной и глубиной, равной 0,9-1,3 мкм и не более 0,3 мкм соответственно, в канавках канала расположены единичные электроды затвора, при этом единичные электроды затвора расположены асимметрично в сторону единичных электродов истока, одноименные единичные электроды истока, затвора, стока соединены электрически.

При этом

– полевой транзистор с барьером Шотки в канале каждой из пар единичных электродов исток-сток со стороны единичного электрода истока дополнительно содержит диэлектрический слой, имеющий низкую диэлектрическую проницаемость, толщиной, равной 0,15-0,25 мкм,

– каждый из единичных электродов затвора относительно его боковой поверхности со стороны единичного электрода стока выполнен по высоте с разным размером поперечного сечения в сторону единичного электрода истока, верхним – длинным и нижним – коротким, примыкающим к поверхности канавки канала, при этом размер поперечного сечения нижней – короткой части единичного электрода затвора равен 0,05-0,5 мкм, размер поперечного сечения верхней – длинной части превышает размер поперечного сечения нижней – короткой части на 0,5-0,8 мкм,

– высота нижней – короткой части равна толщине дополнительного диэлектрического слоя,

– с одной стороны две взаимно перпендикулярные поверхности дополнительного диэлектрического слоя относительно его толщины непосредственно примыкают по ширине единичного электрода затвора к вертикальной поверхности его нижней – короткой части и к горизонтальной превышающей поверхности верхней – длинной части соответственно, а с противоположной стороны упомянутые поверхности расположены вровень с краем верхней – длинной части единичного электрода затвора либо перекрывают от этого края канал с единичным электродом истока не более 4 мкм.

Активным слоем может быть слой n-типа проводимости арсенида галлия либо гетероструктура с двумерным электронным газом.

Дополнительный диэлектрический слой с низкой диэлектрической проницаемостью может быть выполнен из двуокиси кремния либо нитрида кремния.

Полевой транзистор может иметь контактный слой толщиной 0,05-0,2 мкм, выполненный на активном слое.

Раскрытие сущности изобретения.

Совокупность существенных признаков формулы изобретения заявленного мощного СВЧ полевого транзистора с барьером Шотки, а именно:

наличие дополнительного диэлектрического слоя, имеющего низкую диэлектрическую проницаемость, толщиной, равной 0,15-0,25 мкм, расположенного в канале канала каждой из пар единичных электродов исток-сток со стороны единичного электрода истока:

во-первых, обеспечивает расположение превышающей верхней – длинной части единичного электрода затвора на поверхности этого диэлектрического слоя и тем самым обеспечивает снижение паразитного сопротивления каждого единичного электрода затвора и соответственно – паразитного сопротивления общего электрода затвора,

во-вторых, позволяет минимизировать и стабилизировать расстояние от единичного электрода затвора до края канавки со стороны единичного электрода истока и тем самым обеспечивает снижение паразитного сопротивления между единичными электродами затвор-исток и одновременно – увеличение пробивного напряжения между единичными электродами затвор-исток и затвор-сток.

И как следствие того и другого – повышение коэффициента усиления, выходной мощности и коэффициента полезного действия.

Выполнение каждого из единичных электродов затвора относительно его боковой поверхности со стороны единичного электрода стока по высоте с разным размером поперечного сечения в сторону единичного электрода истока, верхним – длинным и нижним – коротким, примыкающим к поверхности канавки канала, при этом размер поперечного сечения нижней – короткой части единичного электрода затвора равен 0,05-0,5 мкм, размер поперечного сечения верхней – длинной части превышает размер поперечного сечения нижней – короткой части на 0,5-0,8 мкм обеспечивает:

во-первых, снижение паразитной емкости между единичными электродами затвор-сток и как следствие – повышение выходной мощности, коэффициента усиления и коэффициента полезного действия,

во-вторых, как было указано выше, паразитная емкость между единичными электродами затвор-сток является элементом нежелательной положительной обратной связи, приводящей к паразитной генерации и, следовательно, ее снижение значительно уменьшает возможность возникновения этой паразитной генерации и как следствие – расширение функциональных возможностей СВЧ полевого транзистора с барьером Шотки.

Выполнение высоты нижней – короткой части единичных электродов затвора, равной толщине дополнительного диэлектрического слоя, обеспечивает жесткость конструкции единичного электрода затвора, его механическую прочность и тем самым надежность СВЧ полевого транзистора с барьером Шотки в целом.

Расположение дополнительного диэлектрического слоя, когда с одной стороны две его взаимно перпендикулярные поверхности относительно его толщины непосредственно примыкают по ширине единичного электрода затвора к вертикальной поверхности его нижней – короткой части и к горизонтальной превышающей поверхности верхней – длинной части соответственно, а с противоположной стороны упомянутые поверхности дополнительного диэлектрического слоя расположены вровень с краем верхней – длинной части единичного электрода затвора либо перекрывают от этого края канал с единичным электродом истока не более 4 мкм, обеспечивает оптимизацию расстояния от единичного электрода затвора до края канавки канала со стороны единичного электрода истока и тем самым – снижение паразитного сопротивления между электродами затвор-исток и одновременно – увеличение пробивного напряжения между электродами затвор-исток и затвор-сток и как следствие – повышение выходной мощности, коэффициента усиления и коэффициента полезного действия.

Выполнение дополнительного диэлектрического слоя толщиной менее 0,15 мкм и более 0,2 мкм не желательно, так как в первом случае приводит к увеличению паразитной емкости между электродами затвор-исток, а во втором – к возможным затруднениям при изготовлении полевого транзистора, например разрыву между нижней – короткой частью и верхней – длинной частью единичного электрода затвора.

Выполнение размера поперечного сечения нижней – короткой части единичного электрода затвора менее 0,05 и более 0,5 мкм не желательно, так как в первом случае может привести к нарушению целостности единичного электрода затвора, а во втором – к уменьшению коэффициента усиления.

Превышение длины верхней – длинной части единичного электрода затвора над нижней – короткой менее 0,5 мкм и более 0,8 мкм не желательно, так как в первом случае приводит к увеличению паразитного сопротивления каждого единичного и соответственно общего электрода затвора, а во втором – к увеличению паразитной емкости между единичными электродами затвор-исток.

Расположение дополнительного диэлектрического слоя менее превышающей поверхности верхней – длинной части единичного электрода затвора, так и его расположение с перекрытием канала с единичным электродом истока от края верхней – длинной части единичного электрода затвора более 4 мкм не желательно, так как в первом случае приводит к снижению механической прочности единичного электрода затвора, а во втором – к возможным затруднениям при изготовлении полевого транзистора, например, при изготовлении его контактных площадок.

Контактный слой толщиной как менее 0,1 мкм, так и более 0,3 мкм не желателен, в первом случае он не выполняет своей функции, а именно снижение контактного сопротивления единичных электродов истока и стока, а во втором – из-за возможного бокового травления канавки.

Итак, совокупность существенных признаков заявленного мощного СВЧ полевого транзистора с барьером Шотки благодаря сочетанию в конструкции различных технических решений и на ином уровне позволит еще более повысить достаточно высокие выходные параметры прототипа.

Изобретение иллюстрируется чертежами.

На фиг.1 и 2 дан фрагмент мощного СВЧ полевого транзистора с барьером Шотки, содержащий две последовательности единичных электродов истока, затвора, стока, где:

– полуизолирующая подложка арсенида галлия – 1,

– активный слой – 2

– гребенка из чередующейся последовательности единичных электродов истока, затвора, стока – 3,

– единичные электроды истока, затвора, стока – 4, 5, 6 соответственно,

– пары единичных электродов исток-сток – 7,

– области полуизолирующего арсенида галлия – 8,

– каналы – 9,

– канавки – 10,

– дополнительный диэлектрический слой – 11.

При этом, в том числе

на фиг.1 – частный случай выполнения, когда с противоположной стороны упомянутые поверхности дополнительного диэлектрического слоя расположены вровень с краем верхней – длинной части единичного электрода затвора,

на фиг.2 – частный случай выполнения, когда перекрывают от этого края канал с единичным электродом истока не более 4 мкм.

Мощный СВЧ полевой транзистор с барьером Шотки работает следующим образом:

на единичные электроды затвора и стока СВЧ полевого транзистора подаются необходимые напряжения смещения от внешних источников. При этом на единичные электроды затвора – отрицательное, а на единичные электроды стока – положительное относительно единичных электродов истока. На единичные электроды затвора подается СВЧ сигнал, который усиливается СВЧ полевым транзистором и подается на его выход.

Примеры конкретного выполнения заявленного мощного СВЧ полевого транзистора с барьером Шотки.

Пример 1

Мощный СВЧ полевой транзистор с барьером Шотки выполнен на полуизолирующей подложке арсенида галлия 1 с активным слоем 2, например n-типа проводимости арсенида галлия, толщиной не более 0,4 мкм и концентрацией легирующей примеси не более 3×1017 см3 в виде гребенки 3, например, из двух чередующихся последовательностей единичных электродов истока 4, затвора 5, стока 6. При этом между парами единичных электродов исток-сток 7 расположены области полуизолирующего арсенида галлия 8 шириной, равной 5 мкм. В парах единичных электродов исток-сток 7 расположены каналы 9 с канавками 10 шириной и глубиной, равной 1,1 и 0,25 мкм соответственно. В канавках 10 канала 9 расположены единичные электроды затвора 5 длиной не более 0,7 мкм асимметрично в сторону единичных электродов истока 4.

В канале 9 каждой из пар единичных электродов исток-сток 7 со стороны единичного электрода истока 4 выполнен дополнительный диэлектрический слой 11, например, из двуокиси кремния, имеющий относительную диэлектрическую проницаемость, толщиной, равной 0,20 мкм.

Каждый из единичных электродов затвора 5 относительно его боковой поверхности со стороны единичного электрода стока 6 выполнен по высоте с размером поперечного сечения в сторону единичного электрода истока 4 верхним – длинным, равным 1 мкм, и нижним – коротким, примыкающим к поверхности канавки 10 канала 9, равным 0,275 мкм, что соответствует превышению размера поперечного сечения верхней – широкой части над нижней – узкой частью единичного электрода затвора на 0,725 мкм.

Высота нижней – узкой части единичного электрода затвора равна 0,20 мкм – толщине дополнительного диэлектрического слоя 11.

При этом с одной стороны две взаимно перпендикулярные поверхности дополнительного диэлектрического слоя относительно его толщины непосредственно примыкают по ширине единичного электрода затвора 5 к вертикальной поверхности его нижней – узкой части и горизонтальной превышающей поверхности верхней – длинной части соответственно, а с противоположной стороны упомянутые поверхности расположены, например, вровень с краем верхней – длинной части единичного электрода затвора 5.

Примеры 2-7.

Аналогично примеру 1 выполнены мощные СВЧ полевые транзисторы с барьером Шотки, но при других значениях:

– толщины дополнительного диэлектрического слоя,

– превышения верхней – длинной части единичного электрода затвора над его нижней – узкой частью,

– перекрытия дополнительным диэлектрическим слоем канала с единичным электродом истока, как указанных в формуле изобретения (примеры 2-5), так и выходящих за ее пределы (примеры 6-7).

А так же с активным слоем типа гетероструктуры, например типа AlGaAs/InGaAs с двумерным электронным газом (пример 4).

А также дополнительным диэлектрическим слоем, выполненным из нитрида кремния (пример 5).

А также с контактным слоем, например, из GaAs n+, выполненном на активном слое (пример 5).

На изготовленных образцах мощных СВЧ полевых транзисторов с барьером Шотки были измерены выходная мощность, коэффициент усиления и определен коэффициент полезного действия.

Данные сведены в таблицу.

Как видно из таблицы, образцы мощных СВЧ полевых транзисторов с барьером Шотки, изготовленные согласно конструктивным параметрам, указанным в формуле изобретения (примеры 1-5), имеют по сравнению с прототипом более высокую выходную мощность примерно 1000 мВт, более высокий коэффициент усиления по мощности примерно 12 дБ на частоте 10 ГГц и соответственно более высокий коэффициент полезного действия.

Что касается образцов мощных СВЧ полевых транзисторов с барьером Шотки (примеры 6-7), изготовленных с конструктивными параметрами, выходящими за пределы, указанные в формуле изобретения, то они имеют более низкую выходную мощность примерно 750 мВт, более низкий коэффициент усиления по мощности примерно 10 дБ на частоте 10 ГГЦ и соответственно более низкий коэффициент полезного действия.

Таким образом, предлагаемая конструкция мощного СВЧ полевого транзистора с барьером Шотки позволит по сравнению с прототипом повысить достаточно высокие выходные параметры последнего, а именно:

– выходную мощность примерно на 25-30 процентов,

– коэффициент усиления примерно на 2 дБ на частоте 10 ГГц,

– и соответственно коэффициент полезного действия.

Более того, значительно расширить функциональные возможности при применении его в качестве активного элемента в ряде устройств СВЧ диапазона, например усилителей мощности для активных фазированных антенных решеток (АФАР), где, как сказано выше, требуется высокая удельная мощность и высокий коэффициент полезного действия.

Источники информации

1. Патент РФ 2349987 МПК H01L 29/338 приоритет 17.07.07, опубл. 20.03.09.

2. Полевые транзисторы на арсениде галлия. Принципы работы и технология изготовления. Под ред. Д.В.Ди Лоренцо, Д.Д.Канделуола Перевод с английского под ред. Г.В.Петрова, М., «Радио и связь», 1988 г., стр.118.

3. «Мощные GaAs полевые СВЧ транзисторы со смещенным затвором», авторы Лапин В.Г., Красник В.А., Петров К.И., Темнов A.M. Одиннадцатая Международная конференция «СВЧ-техника и телекоммуникационные технологии». Сборник материалов конференции 10-14 сентября 2001 г., Севастополь, Крым, Украина, стр.135.

4. Патент РФ 2307424 МПК H01L 29/812, приоритет 02.12.05, опубл. 27.09.07.

Формула изобретения

1. Мощный СВЧ полевой транзистор с барьером Шотки, содержащий полуизолирующую подложку арсенида галлия с активным слоем, гребенку из чередующейся, по меньшей мере, более одной последовательности единичных электродов истока, затвора, стока, при этом между парами единичных электродов исток-сток расположены области полуизолирующего арсенида галлия шириной не менее 4 мкм, а в парах единичных электродов исток-сток расположены каналы с канавками шириной и глубиной, равной 0,9-1,3 мкм и не более 0,3 мкм соответственно, в последних расположены единичные электроды затвора, при этом единичные электроды затвора расположены асимметрично в сторону единичных электродов истока, одноименные единичные электроды истока, затвора, стока соединены электрически, отличающийся тем, что полевой транзистор с барьером Шотки в канале каждой из пар единичных электродов исток-сток со стороны единичного электрода истока дополнительно содержит диэлектрический слой, имеющий низкую диэлектрическую проницаемость толщиной, равной 0,15-0,25 мкм, а каждый из единичных электродов затвора относительно его боковой поверхности со стороны единичного электрода стока выполнен по высоте с разным размером поперечного сечения в сторону единичного электрода истока, верхним – длинным и нижним – коротким, примыкающим к поверхности канавки канала, при этом размер поперечного сечения нижней – короткой части единичного электрода затвора равен 0,05-0,5 мкм, размер поперечного сечения верхней – длинной части превышает размер поперечного сечения нижней – короткой части на 0,5-0,8 мкм, высота последней равна толщине дополнительного диэлектрического слоя, при этом с одной стороны две взаимно перпендикулярные поверхности дополнительного диэлектрического слоя относительно его толщины непосредственно примыкают по ширине единичного электрода затвора к вертикальной поверхности его нижней – короткой части и к горизонтальной превышающей поверхности верхней – длинной части соответственно, а с противоположной стороны упомянутые поверхности расположены вровень с краем верхней – длинной части единичного электрода затвора либо перекрывают от этого края канал с единичным электродом истока не более 4 мкм.

2. Мощный СВЧ полевой транзистор с барьером Шотки по п.1, отличающийся тем, что активным слоем может быть слой n-типа проводимости арсенида галлия либо гетероструктура с двумерным электронным газом.

3. Мощный СВЧ полевой транзистор с барьером Шотки по п.1, отличающийся тем, что дополнительный диэлектрический слой с низкой диэлектрической проницаемостью может быть выполнен из двуокиси кремния либо нитрида кремния.

4. Мощный СВЧ полевой транзистор с барьером Шотки по п.1, отличающийся тем, что он может иметь контактный слой толщиной 0,05-0,2 мкм, выполненный на активном слое.

РИСУНКИ

Categories: BD_2393000-2393999